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ABSTRACT

Using an approach based on the diffusion analog of the Cattaneo–Vernotte differential model, we find the exact analytical solution to the
corresponding time-dependent linear hyperbolic initial boundary value problem, describing irreversible diffusion-controlled reactions under
Smoluchowski’s boundary condition on a spherical sink. By means of this solution, we extend exact analytical calculations for the time-
dependent classical Smoluchowski rate coefficient to the case that includes the so-called inertial effects, occurring in the host media with finite
relaxation times. We also present a brief survey of Smoluchowski’s theory and its various subsequent refinements, including works devoted to
the description of the short-time behavior of Brownian particles. In this paper, we managed to show that a known Rice’s formula, commonly
recognized earlier as an exact reaction rate coefficient for the case of hyperbolic diffusion, turned out to be only its approximation being a
uniform upper bound of the exact value. Here, the obtained formula seems to be of great significance for bridging a known gap between an
analytically estimated rate coefficient on the one hand and molecular dynamics simulations together with experimentally observed results
for the short times regime on the other hand. A particular emphasis has been placed on the rigorous mathematical treatment and important
properties of the relevant initial boundary value problems in parabolic and hyperbolic diffusion theories.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0134727

I. MOTIVATION

The main motivation for writing this paper is to improve a
well-known approximation obtained by Rice for the hyperbolic
diffusion-controlled reaction time-dependent rate coefficient
(further on, “time-dependent” will be omitted for brevity), first
published in his famous book,1 which has for many years served
as the standard reference for all researchers in the field of
diffusion-controlled reactions (DCRs).

Recently, we have studied some mathematical aspects con-
cerning various applications of addition theorems and re-expansion
formulas to describe the diffusion interaction often manifested in
diffusion-controlled reactions.2,3 Diffusion of Brownian particles
in three-dimensional arrays of trapping static sinks embedded in
surrounding media (commonly known as host media4) was under
consideration. To complete a literature review, we believed that it
would be advisable to briefly highlight the main features of the

behavior of the particles rate coefficient at short-times to take into
account the so-called inertial effects (see Sec. V for details) in the host
media with finite values of the relevant relaxation times for diffusive
fluxes. Surprisingly, we found out that general hyperbolic theory
of diffusion-controlled reactions in media with diffusion relax-
ation still requires significant theoretical rethinking and refinement
in a number of both mathematical and physical facets. Below, in
Secs. V and VIII, we will discuss known Rice’s theoretical study
on this topic1,5 in full detail, so here, we only note in passing that
his derivation, contrary to the expectations, led to an approximate
result. It should be particularly emphasized that the formula for
the rate coefficient was presented in Ref. 1 referring to unpublished
results5 without any derivation or proof. What is more important is
that the application of this approximation to the analysis of some
experimental data for short-times caused a few incorrect physical
conclusions. Among them, one of the crucial wrong conclusions is
that the hyperbolic rate coefficient highly diminishes the influence of
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inertial effects on kinetics of particles trapping.1 Therefore, it seems,
not by chance, the emerging interest to the application of the linear
hyperbolic diffusion equation (HDE) in chemical kinetics, associated
with several pioneering Monchik’s papers, entirely faded away since
1985 just after the publication of the aforementioned fundamental
book (Ref. 1). This is especially noticeable against the backdrop of
multiple attempts to describe the short-time regime of diffusion-
controlled reactions using various theoretical methods (see a brief
survey on this subject in Sec. V). In fairness, it should be noted here
that a similar approximate result was obtained in different years by a
number of authors, who studied hyperbolic theory of heat and mass
transfer (see discussion and the references in Ref. 6).

Our ultimate objective in this paper is to extend the parabolic
diffusion-controlled reactions theory to the hyperbolic one. Here-
with, we intend to bridge the gap, which was formed since 1985, in
the literature on the application of the hyperbolic diffusion approach
to the classical Smoluchowski theory of diffusion-controlled
reactions. For this purpose, the existing literature on the above
subject was brought under close critical study and rethinking. That
is why, our work occupies an intermediate place between a review
and a research paper by the choice of material and style of its
presentation.

Before closing this short section, we would like to dwell on
encouraging words from the recent paper by Löwen: “Since iner-
tial effects will necessarily become relevant for length scales between
macroscopic andmesoscopic both for artificial self-propelled objects
and for living creatures, a booming future of inertial active
systems is lying ahead.”7 Really, there has been a pronounced trend
within recent years to investigate both theoretically and experi-
mentally the so-called ballistic regime of Brownian motion and its
different applications, particularly in the study of the self-propulsion
for active particles (for an extended discussion of this subject, see
Refs. 8–10).

The current paper is laid out as follows. In Sec. II, we consider
the physical background of the problem and briefly discuss mathe-
matical methods to solve it. Pursuing pedagogical goals and keeping
in mind further refinements to include inertial effects, classical
Smoluchowski’s theory is described in Sec. III. Section IV contains
a summary on the existing theories, which revise the Smoluchowski
theory to take into account inertial effects. Next, Sec. V begins with
a description of the Cattaneo–Vernotte differential model analog
for diffusion. Then, we derive an appropriate HDE and general
integral expression for the relevant local diffusive flux of parti-
cles. In Sec. VI, the physical and mathematical formulation of the
hyperbolic Cauchy–Dirichlet initial boundary value problem and its
solution were considered. Section VII comprises rigorous analytical
calculations of the desired reaction rate coefficient and correspond-
ing Rice’s approximation. The discussion of the obtained results
are given in Sec. VIII. Finally, Sec. IX draws the main conclu-
sions of the present study. For the convenience of the readers, we
added the Appendix, which contains somemathematical definitions,
notations, and formulas used in this paper.

II. INTRODUCTION

As a consequence, we shall evaluate analytically the rate
coefficient for the irreversible trapping of small Brownian particles
(for brevity, we call them B particles) by spherical static sinks

distributed randomly in three-dimensional (3D) host media.
Throughout this paper, we study the homogeneous and isotropic
host media. Under the assumption of isotropy and homogeneity
of the given host media, the evolution of B particles is often char-
acterized by some finite scalar values called diffusion relaxation
times. This case can lead to significant inertial effects for short-time
scale reaction dynamics, which should be taken into account. For
simplicity’s sake, we shall consider here only the field-free hyperbolic
diffusion of B particles.

Here, we will clarify the physical and mathematical models
underlying in the basis of the diffusion theories. Furthermore, we
present Smoluchowski’s diffusion theory in sufficient detail since
it will be straightforwardly generalized to the required case of the
hyperbolic diffusion. Moreover, the following should be emphasized
from the first. Considering that one of the main objectives of this
paper is to derive an exact formula for the rate coefficient, which
resulted due to the use of the relevant hyperbolic initial boundary
value problem, we focus our special attention on the correct mathe-
matical definitions, statements, and solutions to the problems in the
diffusion theories.

Therefore, keeping in mind the above main objective of our
study, for the sake of clarity, first, we shall present here a sketch of the
classical Smoluchowski theory following standard approaches.1,11

A. General background

Two classical Fick diffusion laws are appropriate in describing
various diffusive transport phenomena, including Brownian motion
for the most cases of common physical applications in nature and
industry.12

It is common knowledge that from a mathematical point of
view, the theory of diffusion transfer is the counterpart of the heat
transfer theory. Very often, they both may be reduced to the study
of various initial boundary value problems for the linear partial
differential equations of parabolic type. At the present time, the
latter problems are well elaborated in mathematical physics and
form a strong mathematical background, in particular, for describ-
ing diffusion, usually called classical theory of diffusion.13,14

B. Physical model

Consider now the physical background of the problem. We
shall study here Brownian motion with the subsequent reaction
of non-self-interacting reactants of sort B (see, e.g., Ref. 15 for
effects of interactions of particles B) in a stagnant liquid non-
reactive homogeneous and isotropic host medium. B particles are
small enough to treat them as point-like particles. Assume that reac-
tants B diffuse toward much larger active non-overlapping static
sinks A with very quick irreversible trapping of these reactants by
the whole surface of these sinks after the contact. Thus, we treat
a diffusion-controlled reaction as ultrafast, i.e., the characteristic
reaction time is supposed to be negligibly short.16 In addition, we
also assume that both reactants are uncharged and spherical and
the diffusion interaction (many-body effects reflecting the mutual
influence of the sinks on diffusion and depletion of B particles)
between sinks may be ignored.3 Furthermore, sinks are assumed
to act as traps of infinite capacity. The theory should describe the
changes of B reactant local concentration due to both their Brownian
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motion and the subsequent ultrafast reaction events on the static
sinks A.

Since the pioneering work of Smoluchowski published in
1916,17 such kinds of processes are quite successfully described
theoretically by the so-called Smoluchowski trapping model of the
irreversible bulk diffusion-controlled reactions.1,15,18–21 Hence, for the
assumptions given above, we shall investigate the case of diffusion
toward a single spherical sink of radius R, whose center, for con-
venience sake, we locate at the origin O. Hereafter, R ≙ RA + RB is
the radius of the reaction sphere (or encounter radius) and RA and
RB are the van der Waals radii of reactants A and B. Moreover,
since B’s assumed to be point-like particles (i.e., RB ≪ RA), one can
set R ≈ RA. In the final run, this reduction leads to a spherically
symmetric diffusion problem, which allows us to derive the exact
analytical expressions for the distribution of particle B around a
sink.22

The Smoluchowski theory or, more precisely, Smoluchowski
Brownian coagulation theory17,20 gained wide acceptance due to
its physical clarity, mathematical simplicity, and essential accord
between theoretical calculations and experimental results on various
diffusion-controlled processes for the long time characteristics.1

Therefore, consider an irreversible bulk diffusion-controlled
trapping of B particles in a nonreactive host medium of a large
macroscopic size with excess suspended static sinks A, as is usually
the case in many applications. These reactions occur by the simple
bimolecular reaction scheme,15,20,23

A + B
k(t)
ÐÐÐ→A + P, (1)

where P is a product of the reaction and, according to
Smoluchowski’s theory, the reaction rate coefficient k(t) should be
taken as a time-dependent positive function k(t) > 0 for all t > 0,
being calculated by means of a solution to some initial boundary
value problem for the relevant diffusion equation.

The kinetic equations and initial conditions (Cauchy problems)
corresponding to scheme (1) are

dcB(t)
dt

≙ −k(t)cAcB(t), dcA

dt
≙ 0, t > 0, (2)

cB(t)∣t→0+ → c
0
B, cA(t) ≡ c0A ≙ const, (3)

where cA(t) and cB(t) are the bulk concentrations of reactants A
and B.

C. Mathematical model

Thus, by the required solutions to the diffusion equations in a
given domain of the 4D augmented configuration space (see Fig. 1),
we mean the probability of finding a diffusing particle B around the
reaction boundary of a test sink at a position x and at a moment
t, which will be denoted for classical and hyperbolic diffusion as
w(x, t) and ρ(x, t), respectively.

Remark 1. Note that for the identical, noninteracting B parti-
cles, a desired probability function may also be treated as the local
concentration of B particles.3

For more formalization of the classical Smoluchowski theory,
we recall the known diffusion-controlled reaction (DCR) postulates

to use the classical diffusion description for the diffusion-controlled
reactions.18

(1) The physical system, comprising chemically active reagents,
is in thermal equilibrium, and at times t < 0, no reaction
occurs.

(2) The specific form of the initial (as t → 0+) and boundary
conditions on the reaction surfaces for the diffusion equa-
tion is completely determined by the features of chemical and
physical processes under study. In other words, the specific
boundary condition describes boundary inherent physical
and chemical nature.

(3) The diffusion problem can be reduced to study the motion of
many B particles surrounding a single static sink A.

Remark 2. Mention should be made of another alternative
approach to evaluate the reaction rate. The required rate may be
found with the help of the survival probability of B particles, react-
ing with sink A. However, discussion on this subject is not our task in
the present work.

According to the second postulate, we assume here that the
reaction between B and A to form a product P is very fast, and
therefore, we shall pose the perfectly absorbing boundary condition
on the reaction surfaces. This condition appeared to be the homo-
geneous Dirichlet boundary condition. Throughout this paper, for
brevity sake, we shall term the initial boundary value problems
with the Dirichlet boundary condition for both linear parabolic and
hyperbolic diffusion equations as Cauchy–Dirichlet problems.

It may be shown that the third DCR postulate directly yields
that the motion of particles B obeys two Fick’s laws of diffusion.
In particular, note that the third DCR postulate is at the heart of
the classical diffusion theory, and to describe inertial effects, it will
be changed in Sec. V. In this connection, we will stress that here
the term classical diffusion theory will be used for the parabolic
diffusion theory within Smoluchowski’s trapping model for the
diffusion-controlled reactions.

For pedagogical reasons, to use a straightforwardly similar
mathematical approach in the case of the hyperbolic diffusion (see
Sec. V), in Sec. III, we will outline the corresponding solution to the
classical diffusion rather thoroughly.

Remark 3. Finally, it is pertinent to note that classical solu-
tions for both parabolic and hyperbolic Cauchy–Dirichlet problems
are well-posed in cases of interest to us even when they do not obey the
known initial boundary compatibility conditions.13

III. SMOLUCHOWSKI’S THEORY

Thus, we use here Smoluchowski’s approach, which allows
us to reduce the original problem to calculating the flux of dif-
fusing B particles’ trapping by only one sink, which is suspended
in a host medium with B’s. Keeping in mind further refinements
of the Smoluchowski theory in order to include inertial effects,
we present here a slightly modified solution of the appropriate
spherically symmetric linear parabolic Cauchy–Dirichlet problem
outside a spherical sink. This approach is based on the reduction
of the original problem to the similar one, posed in the semi-infinite
slab domain.
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A. Statement of the problem

As already mentioned above, it is sufficient to consider
diffusion of B’s toward a test 3D spherical sink of radius R placed
in the origin of the global coordinates {O; x}. Hence, we assume
that given sink occupies the ball domain, Ω ∶≙ BR(0) ≙ {x ∈ R3 :∥x∥ < R}, where ∥ ⋅ ∥ stands for the common Euclidean norm. As
is customary, let ∂Ω denote the boundary of a domain Ω such that
Ω ≙ Ω ∪ ∂Ω, where the bar symbol denotes the closure. In addition,
let (x, t) ∈ R3+1

∶≙ R
3
∪R+ such that x ∈ R3 and t ∈ R+ ∶≙ (0,+∞)

(see Fig. 1).
For the both parabolic and hyperbolic Cauchy–Dirichlet prob-

lems, we need the following.

Definition 1. Cylindrical evolution domain Q ⊂ R3+1 with the
bottom base Ω ⊂ R

3 at t ≙ 0 is the set of points (x, t) such that
Q ∶≙ Ω ×R+.

Thus, the exterior of the cylindrical domain Q is the partially
bounded domain Q− ∶≙ R3+1/Q ≙ Ω− ×R+, where Ω

−
∶≙ R

3/Ω.
Diffusion of B’s occurs in Ω

−, and space-time domain Q− is often
called the augmented configuration space.

The surface Γ ∶≙ ∂Ω ×R+ is termed the lateral boundary of the
cylinder Q associated with Ω. The boundary ∂Q ≙ Ω ∪ Γ (see Fig. 1)
is often called a glass.

We shall treat the free Brownian diffusion of point-like particles
B through a homogeneous and isotropic host medium Ω

− and
their instant reaction upon the contact with the spherical reaction
surface of a sink ∂Ω ≙ ∂BR(0) called perfectly absorbing sink.
Hereafter, boundary ∂Ω does not depend on time t. Further-
more, one can see that the diffusion of B particles is radial;
therefore, for the problem at issue, it is expedient to use the
spherical coordinates, attached to the origin O, coinciding with the
sink center (i.e., ∥x∥ ≙ r). Therefore, we are looking for the radial
basis function w(r, t) (time-dependent probability function of the
form w : Q− → ∥0, 1)). In addition, it is common to assume that
initially, the diffusing particles were scattered uniformly within the
whole domain Ω

− of the host medium.
According to Smoluchowski, evolution of the required particle

distribution function w(r, t) is governed by the classical diffusion

FIG. 1. Sketch of the geometrical components corresponding to the initial boundary
value problem for the diffusion equations. The gray shaded region here indicates
the 4D augmented configuration space Q− = Ω− ×R+ ⊂ R

3+1 for B particles.

theory. Thus, a relevant external Cauchy–Dirichlet problem for the
parabolic diffusion equation reads1

∂w

∂t
≙ D

1

r2
∂

∂r
(r2 ∂w

∂r
) in Q

−, (4)

w(r, t)∣t→0+ → 1 in Ω
−, (5)

w(r, t)∣r→R+ → 0 in Γ, (6)

w(r, t) ∈ L∞(Q−). (7)

Hereafter, the space L∞(X) is defined as the set of all uniformly
bounded, real functions in domain X. On the reaction surface ∂Ω,
we imposed here the homogeneous Dirichlet boundary condition
(6), which in various applications to physics, chemistry, and biology
is commonly called the Smoluchowski reaction boundary condition.1

It is clear that physically, this condition accords with the case of
a perfectly absorbing sink. Moreover, to obtain a unique solution
w(r, t) of the above problem, we require its boundedness in Q, i.e.,
condition (7). One can show that this condition corresponds to the
regularity condition at infinity, which should be imposed for the
external elliptic problems, describing the steady state diffusion.24

Remark 4. Note that contrary to the corresponding steady state
problems, here, we do not need to impose this rather strong regularity
condition at infinity.13 Nevertheless, many non-mathematical works
persistently use this unnecessary condition in the statements of appro-
priate initial boundary value problems (see, e.g., Refs. 25–28). These
papers usually assert that to complete the mathematical statement
of the above external diffusion problem, one should also require the
regularity condition at infinity,

w(r, t)∣r→+∞ → 1 for all t > 0. (8)

Furthermore, they even indicate the physical meaning of condition (8),
claiming that the desired function w(r, t) very far from an absorbing
sink should not be perturbed by this sink.

Finally, it is important to note that throughout this work
by a solution to the Cauchy–Dirichlet problems posed for the
parabolic and hyperbolic diffusion equations, we shall mean the
corresponding classical solutions, irrespective to the type of these
equations.13

B. Calculation of the classical rate coefficient

The main objective for the Smoluchowski theory in finite sink
arrays is to calculate the total trapping rate of B particles by the
reaction surface ∂Ω of a given sink,

k(t) ≙ ∫
∂Ω

ν(x, t) ⋅ j(x, t)∣
∂Ω

dS. (9)

Here, ν(x, t) is the normal unit vector pointing outward of Q− at its
spatial x ∈ ∂Ω and temporal t > 0 points (as shown in Fig. 1). The
integration is performed over whole reaction surface ∂Ω at a fixed
instant t.
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Often, to study the influence of different effects (e.g., for
describing diffusive interaction between sinks3), it is convenient
to reduce the reaction rate coefficient (9) by its steady state value
k0S ∶≙ 4πDR, which is usually called the Smoluchowski rate constant1

[see Eqs. (30) and (31)]. Thus, we introduce the dimensionless
reduced rate coefficient,

k
∗(t) ≙ k(t)/k0S. (10)

From here on, in the present study, we shall mostly use the reduced
rate coefficient (10).

Hence, the key point of the theory is how to find the exact
expression for the local diffusive flux j(x, t) in general formula
(9). This can be done with the aid of known solution w(x, t) to
the Cauchy–Dirichlet problem (4)–(7) and appropriate constitutive
relation, which connects scalar field w(x, t) with vector field j(x, t).
The classical constitutive relation is the well-known first Fick’s law
of diffusion,1

j(x, t) :≙ −D∇w(x, t). (11)

Using the spherical symmetry of problems (4)–(7), one can
readily recast general equations [Eqs. (9) and (11)] in spherical
coordinates and obtain

k
∗(t) ≙ R

∂

∂r
w(r, t)∣

r→R+

. (12)

C. Solution of the problem

Although the solution to the posed classical parabolic
Cauchy–Dirichlet problem [(4)–(7)] is well known,1,13,14 we will
find it by a slightly modified approach, which is convenient for
our later generalization to the case of the relevant hyperbolic
Cauchy–Dirichlet problem.

First, let us recall known Kelvin’s transformation.

Definition 2. Transformation w ↦ u, r ↦ r∗ is called Kelvin’s
one if the following relations hold:

u(r∗, θ,ϕ) ≙ rw(r, θ,ϕ), (13)

r ≙ 1/r∗, (14)

where (14) is a spatial inversion.13

This definition in its turn allows us to introduce the following.

Definition 3. We define the incomplete Kelvin transformation
1 −w ↦ v; (r, t)↦ (r, t) as follows:14

r∥1 −w(r, t)∥ ≙ Rv(r, t). (15)

Clearly, this relation is nothing but Kelvin’s transform (13) if
one does not perform corresponding spatial inversion (14).

Remark 5. We have to emphasize that generally, a spatial part
of (15) is a 3D transform, namely, mapping of the exterior of the

ball domain Ω
− to the 3D semi-space: Ω− → R

3
+ ∶≙ {x ∈ R3 : x > 0}.

However, due to the spherical symmetry of our problem, formally, we
have 1D to 1D spatial transform.

Hence, one formally reduces the posed problem to the case with
1D symmetry, with respect to an auxiliary function depending on the
spatial variable x alone.

For the further consideration, it is convenient to look for the
solution of problems (4)–(7) as an ansatz, written with the help of
transform (15) in the form

w(r, t) ≙ 1 − R

r
v(x, τ). (16)

Ansatz (16) defines an auxiliary function v : Q−x → (0, 1∥, where
the corresponding domain transform reads Q− ↦ Q−x ∶≙ R

2
+ ≙ R+

×R+ ≙ {x > 0} × {τ > 0}. Corresponding linear transformation to
the dimensionless variables (r, t)↦ (x(r), τ(t)) reads

x(r) ∶≙ r

R
− 1 ≥ 0, τ(t) ∶≙ t

tD
≥ 0. (17)

Here, we normalized time by the characteristic duration of the dif-
fusional encounter on the reaction sphere of radius R21 or just the
diffusion time,

tD ∶≙ R
2/D. (18)

Obviously, the auxiliary function v(x, τ) in (16) is uniquely
determined by the following dimensionless 1D Cauchy–Dirichlet
problem:

∂v

∂τ
−
∂
2
v

∂x2
≙ 0 in Q

−

x , (19)

v(x, τ)∣τ→0+ → 0, x ∈ R+, (20)

v(x, τ)∣x→0+ → 1, τ ∈ R+, (21)

v(x, τ) ∈ L∞(Q−x ). (22)

It is clear that using this initial boundary value problem, one
can describe the distribution of B particles 1 − v(x, τ) outside the
perfectly absorbing boundary {x ≙ 0} of a semi-infinite slab {x < 0}.

Simple calculations show that ansatz (16) leads to the basic
formula,

∂

∂r
w(r, τ)∣

r→R+

≙
1

R
[1 − ∂

∂x
v(x, τ)∣

x→0+
], (23)

whereas the first term in the right-hand side 1/R describes the
curvature effects.29 Thus, we have the following.

Theorem 1. Solution w(r, t), describing the spherically sym-
metric diffusion of B particles toward a spherical perfectly absorbing
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sink [(4)–(7)], is connected with appropriate auxiliary solution
1 − v(x, τ) for diffusion of B’s to a perfectly absorbing semi-infinite
slab [(19)–(22)] by means of (16).

This implies evident.

Corollary 1. Using relation (23), the formula for the reduced rate
coefficient (12) may be rewritten in the most simplified form,

k
∗

S (τ) ∶≙ kS(τ)
k0S
≙ 1 + k∗x (τ), (24)

k
∗

x (τ) ∶≙ − ∂

∂x
v(x, τ)∣

x→0+
→

1√
πτ

. (25)

Thus, we have obtained the reduced classical Smoluchowski
rate coefficient (24), where a part responsible for the trapping rate
upon the slab boundary wall k∗x (τ) (25) was highlighted.

Remark 6. Hence, it is evident that singular behavior of the func-
tion k∗(τ) at short times is entirely caused by the slab part of this rate
coefficient (25), i.e.,

k
∗

x (τ) ≙ 1√
πτ
→ +∞ as τ → 0 + . (26)

The solution to the Cauchy–Dirichlet problem [(19)–(22)] is
well known, so we write down solution and its derivative with
respect to x and also corresponding Laplace transforms, which are
denoted by overbars,30

v(x; s) ≙ 1

s
exp(−√sx), d

dx
v(x; s) ≙ − 1√

s
exp(−√sx),

v(x, τ) ∶≙ erfc( x

2
√
τ
), ∂

∂x
v(x, τ) ≙ − 1√

πτ
exp(− x2

4τ
). (27)

Hereafter, erfc(y) is the complementary error function.31

Hence, we readily get the important statement.

Lemma 1 (on commutativity). For the Cauchy–Dirichlet prob-
lem [(19)–(22)], the following property holds true:

lim
x→0+

∂

∂x
L
−1{v(x; s)} ≙ L −1{ lim

x→0+

d

dx
v(x; s)}. (28)

Taking into account Theorem 1 and Lemma 1, one can infer
the following.

Theorem 2. To find the trapping rate coefficient in the case
of reactions described by the parabolic Cauchy–Dirichlet problem
[(19)–(22)], it is sufficient to find the Laplace inverse for the derivative
of the corresponding Laplace transformed solution v(x; s)with respect
to x at the auxiliary slab boundary {x ≙ 0}.

By means of Theorem 1, we can solve Cauchy–Dirichlet
problem [(4)–(7)] and obtain a well-known solution,17

w(r, t) ≙ 1 − R

r
erfc( r − R

2
√
Dt
) in Q

−. (29)

Rewriting formula (24) in the original dimension form, we arrive at
famous Smoluchowski’s trapping rate coefficient,1,17

k
∗

S (t) ≙ 1 + R√
πDt

for t > 0, (30)

lim
t→+∞

kS(t) ≙ 4πRD. (31)

D. Drawbacks of the classical diffusion theory

An important point is that Riemann already in the 19th cen-
tury obtained a result of great importance for both heat and diffusion
theories. He proved that the parabolic thermal conductivity opera-
tor corresponds to a strictly defined class of isothermal surfaces, and
it is impossible to go beyond this class by any modifications of the
initial and boundary conditions.32 Unfortunately, Riemann’s work32

has not caught the attention for long time, and only by the mid-20th
century, a number of authors called their attention to the serious
drawbacks of the classical heat and diffusion transfer theory.33 In
summary of this brief theory survey of Smoluchowski, we have to
point out a couple of important theoretical drawbacks of the classical
diffusion theory, which are common to call paradoxes.33

Paradox 1. It has long been known that the use of the classical
diffusion equation predicts an unphysical effect of an infinite prop-
agation velocity of a diffusive perturbation, which is known in the
literature as paradox of infinite velocity or, more precisely, paradox
of infinite speed of propagation of diffusion perturbations.34 Since this
paradox was many times and comprehensively considered (see, e.g.,
Ref. 33), we shall not dwell on it here.

Paradox 2. Surprisingly, little attention had been paid, how-
ever, to another important paradox, which, as far as we know, was
revealed for the first time by Planck in 1930.35 This paradox is that
classical theory leads to unphysical singular behavior of the heat local
flux on a boundary as t → 0. Independently, in their seminal paper
of 1949, Collins and Kimball have also drawn attention to this fact,
which compromise the Smoluchowski diffusion theory: “In most
cases, the flux falls to a reasonable value in an extremely small time,
and the total amount of reaction predicted is finite, but, neverthe-
less, the singular rate at t ≙ 0 is a blemish on the theory”36 [see (26)].
Thus, it is reasonable to call this unphysical local flux behavior as
t → 0 the zero time paradox.

The cause of paradox 2 can be shown to be in violation of the
so-called compatibility condition between initial (5) and boundary
(6) conditions.13 Really, in the case of the Cauchy–Dirichlet problem
[(4)–(7)], one has the following incompatible iterated limits:

lim
t→0+
[ lim
r→R+

w(r, t)] ≙ 0, (32)

lim
r→R+
[ lim
t→0+

w(r, t)] ≙ 1. (33)

Finally, note in passing that a comprehensive discussion on
the full set of now known classical diffusion theory paradoxes the
interested reader can find in an informative book (Ref. 33).
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Thus, the imperfection inherent in the parabolic theory of
diffusion leads to a number of parabolic equation paradoxes and
also the so-called ill-posed boundary value problems.13 Therefore, to
describe adequately diffusion transfer, one should extend the class of
parabolic initial boundary value problems.

IV. EXTENSIONS OF SMOLUCHOWSKI’S THEORY

In succeeding years to improve the Smoluchowski diffusion
theory, a number of its modifications appeared.

A. Collins–Kimball revisit

For the first time, a comprehensive critical analysis of the
Smoluchowski theory was given by Collins and Kimball in 1949.36

The classical Smoluchowski model was modified to the so-
called Smoluchowski–Collins–Kimball (SCK) model.37 To resolve
the zero time paradox, they, particularly, proposed to replace
Smoluchowski’s boundary condition of a perfectly absorbing sink
by the Collins–Kimball (or radiation) boundary condition. This con-
dition corresponds to having a probability of reaction due to the
encounter of a particle B and a sink A that is less than 1.19 The SCK
analysis lies a little apart from our study, andmoreover, it was widely
discussed in the literature for many years.1,18–21 Hence, here, we do
not dwell on the SCK correction any more.

B. Noyes revisit

Subsequently, in 1961, Noyes thoroughly revised
Smoluchowski’s theory.38 Here, it is expedient to cite known
Weiss’s review paper published in 1986. “Noyes . . . proposed
to overcome the difficulty in Smoluchowski’s theory in a more
phenomenological way by introducing an encounter density, h(t),
defined so that h(t)dt is the probability that two particles separating
from a nonreactive encounter at t ≙ 0 will react with each other for
the first time between t and t + dt. Noyes then writes for k(t), the
expression

k(t) ≙ k(0)(1 −∫ t

0
h(z)dz), (34)

where k(0) is the rate constant derived from equilibrium
statistics.”39

One can see that the Noyes rate coefficient (34) also resolves the
zero time paradox: k(t)→ k(0) < +∞ as t → 0. However, with that,
Noyes claimed that using Eq. (34), we cannot get an exact value for
the rate coefficient at short times: 0 < t ≲ 10 ps.38

Remark 7. It should be noted that thereafter, the equivalence of
the Collins–Kimball and Noyes approaches has been demonstrated by
several authors (see Ref. 40 and the references therein).

C. On some subsequent generalizations

Many various refinements have subsequently been made to
develop a simple Smoluchowski trapping model. Here, we just give
a brief summary of some appropriate extensions only.

Generally speaking, on other theories, one should take into
account DCR postulates mentioned in Sec. II. Accordingly, we agree

with Torney and McConnell, who believed that all known theories
that calculate a classical trapping rate coefficient are identical if they
use the same initial and boundary conditions for the classical dif-
fusion equation (4).41 By means of the known generalized Langevin
equation, Dong and Andre suggested the so-called generalized diffu-
sion equationmethod.42 The Dong–Andre theory easily resolves the
zero time paradox; however, one can see that this approach leads to
the infinite velocity paradox, and that is exactly the same lack as in
the classical Smoluchowski theory case.

Worthy of mention is the step function non-radiative lifetime
model, which assumes that the reaction occurs with a given constant
probability when the distance between particles B and sink A
becomes lower than some given value R.19 It turned out that this
model describes some experimental results better than the classical
SCK model.37

In addition, subsequently, essential attempts were also
performed to generalize Smoluchowski’s theory in different
aspects;23,39,43–45 however, this topic requires a separate and compre-
hensive consideration.

V. HYPERBOLIC DIFFUSION THEORY

Although, using the SCK model, one can formally resolve the
zero time paradox of the classical diffusion theory, the physical rea-
son of this paradox stems from the fact that Fick’s law neglects the
inertia of B particles, i.e., this model is assumed that the distribu-
tion gradient causes the particles flux instantly. Consequently, we
come to the conclusion that it is infeasible to describe theoretically
required inertial effects, while remaining within the framework of
the SCK model from a conceptual point of view.

A. Preliminary considerations

In addition to the above paradoxes, often, parabolic diffusion
theory does not reproduce correctly even behavior of freely diffus-
ing particles for short times and high magnitudes of the probability
gradients ∇w(x, t). It has been found that, from a physical point
of view, this anomaly of the classical diffusion theory follows from
the assumption that the particles local flux vector fields j(x, t) and
∇w(x, t) across some fixed macroscopic material volume occur at
the same instant of time t. In other words, for some real host media,
the diffusive flux of particles B also depends on the history of the
whole relaxation process.

Thus, it is evident from the foregoing discussion that classical
processes of diffusion transfer for B particles should be slow and cor-
responding probability gradients should be small enough in order to
use Fick’s approximation (11). However, these requirements are not
always fulfilled in applications, and therefore, one should go beyond
this approximation to take into account inertial effects at short time
values.46 Hence, we can naturally suggest the idea to treat the motion
of B particles at small times as a wave like one with some damping.
The latter leads to the mathematical description with the help of the
hyperbolic diffusion approximation.

To study this case quantitatively, one can introduce the char-
acteristic diffusion relaxation time or the velocity correlation time
τD [see Eq. (35)] as the time value required to create conditions in
the physical system under which the first Fick’s law becomes cor-
rect. Simply speaking, τD is the time required for the velocity of a B
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particle to randomize due to collisions with ambient solvent
molecules of the host medium. One can see that the larger the τD,
the more profound these memory effects, and obviously, values of
the relaxation time τD depend on the physical properties of the host
medium.47

It has been found experimentally that diffusion-controlled
processes with above relaxation effects (for definiteness, in our
paper, these effects are referred to as the inertial effects) are observed
in a variety of engineering, physical, chemical, and biological
applications, such as acoustics, combustion noise, and the melting
process, which is driven by an influx of thermal energy from the
environment, diffusion transfer in skin tissues, bacterial movement
through a medium filled with a nutrient, turbulence diffusion
transfer, etc.1,18,47–52

Remark 8. One has to note the lack of coordination for notions
in modern diffusion theory. At the present time, many different terms:
momentum relaxation, relaxation (effect), short-time, memory, non-
Fickian, nonlocal, and inertial effects, are used in the literature as
synonyms.

An additional important point to emphasize is that while
various aspects of thermal inertial effects in the heat transfer prob-
lems have been intensively studied for many years and still are
actively studied at present (see, e.g., only recent comprehensive
reviews given in Refs. 53–56), the influence of inertia effects on the
particles diffusion transfer has been relatively poorly investigated.
Therefore, we can mention here only a few important works on
the hyperbolic diffusion and its applications published over the past
50 years.22,47,49,57,58 Works on the hyperbolic diffusion equation for
the spin magnetization and relativistic Brownian motion are worthy
of special attention as well.59,60

B. Physical background and early studies

It turns out that the above drawbacks of the classical diffu-
sion equation can be naturally eliminated by replacing it with a
hyperbolic diffusion equation, whose behavior is more satisfactory
for short times 0 < t ≲ τD and, at the same time, has equivalent
long-time properties for τD ≪ t. To resolve the paradox of infi-
nite speed, Morse and Feshbach just postulated that the diffusion
equation is hyperbolic, which depends on the finite velocity of the
diffusive disturbance propagation.61 However, discussing his failure
to describe the short-times kinetics by means of classical diffu-
sion, Noyes, nevertheless, pointed out that a hyperbolic diffusion
regime “. . .is unimportant for currently conceivable experimental
applications.”38 In this connection, the authors of the paper by Rice
et al.62 also concluded that “. . .the results given for the times less
than 1 ps must be considered as having mathematical meaning
only.” An important point is that later progress in ultrafast laser
spectroscopy at the present time allows us to study dynamics of reac-
tions on extremely short time scales, again making this aspect of the
theory an important field in current research.16

Nevertheless, a number of authors have repeatedly raised
this question in early physics studies on hyperbolic diffusion
applied to the diffusion-controlled reactions. To our knowledge, the
first attempt to prove classical diffusion approximation and apply
the hyperbolic diffusion equation to describe diffusion-controlled
reactions was made by Monchick.63,64

Remark 9. In Ref. 1, Rice pointed out that there is another
paper by Monchick that has also used the HDE to describe diffusion-
controlled chemical kinetics. Unfortunately, this very reference is
absent in the book, but it seems that most likely, Rice meant aforecited
Monchick’s work (Ref. 64).

Later on, independently, Doi and Kapral called attention to the
fact that Smoluchowski’s diffusion equation (4) is inappropriate for
the description of the behavior of Brownian particles B for the short
time.43,65

Remark 10. In turn, Tachiya showed that this behavior may be
reformulated in terms of the motion of B particles within the diffusion
boundary layer,66 whose formation corresponds to the limit of very
small Knudsen numbers, i.e., as Kn ∶≙ λ/R→ 0, where λ is an average
mean free path of a particle B.

Particularly, in his paper, Doi claimed that for the time interval
0 < t ≲ τD, where the velocity correlation time is

τD ≙ m/ζ, ζ ≙ CRBη, (35)

the B particles behave as free particles. In Eq. (35), m represents
the mass and ζ represents the friction coefficient of the B particle,65

with η being the shear viscosity of the host medium and C being a
numerical coefficient depending on the possible choices of the
boundary conditions on the B particle surface (for the spherical B
particle, we have the two-side bound 4π ≤ C ≤ 6π). As seen from
Eq. (35), the use of the term “inertial effects” is entirely justified by
the dependence of τD on the mass of particle B. Note here that our
definition of τD (35) is distinguished from that of τ∗D given in Ref. 67
by factor 2, i.e., τ∗D ≙ 2τD.

In addition, the diffusion coefficient of a given B particle is
related to its frictional coefficient by the Stokes–Einstein relation,

D ≙ kBT/ζ, (36)

where kB is the Boltzmann constant and T is the absolute tempera-
ture of the host medium.

Rice derived his formula for the rate coefficient within the scope
of the hyperbolic diffusion model.1 Our principal concern will be
given to the rigorous examination of this result in the present paper,
so Rice’s study is discussed below in all necessary details.

C. On other theories describing rates at short times

Continuing the short highlighting of works on the description
of inertial effects, let us turn to the famous review on diffusion-
controlled reactions by Calef and Deutch.68 Therein, we can read
as follows: “The diffusion equation is valid for timescales much
larger than the momentum relaxation time of the macroparticle.
Clearly, to discuss shorter times, a description that includes explic-
itly the particle’s momentum should be adopted.” Below, authors
highlight the fact that to move beyond the classical Smoluchowski
theory, one have to include momentum relaxation effects in the
theory of diffusion-controlled reactions. Hence, here, it would be
of special interest to mention briefly some attempts for extending
the Smoluchowski theory by including the relaxation effects in
time-dependent reaction dynamics.
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In a comprehensive work of 1983, Hess and Klein have derived
the memory-type transport system of the continuity equation and
a modified constitutive relation. These authors also derived the
corresponding hyperbolic short-time expansions for the diffusion
flux j(x, t) of B particles, but, unfortunately, they did not proceed
to any applications of obtained equations.69 Also worth noting is
that rather sophisticated hyperbolic equation with respect to the
deviation from the equilibrium function got Calef and Wolynes.70

While in this paper, the authors noted the following: “. . .it is obvious
that at such short times inertial effects are paramount,” nonetheless,
they have neglected the terms responsible for the inertial effects and
studied the obtained parabolic diffusion approximation only. Later,
in 1992, Hirata proposed a generalization of the Calef–Wolynes the-
ory to apply it for describing the solvation dynamics, which occurs
during the electron transfer reactions.71 Noting the importance
of the inertia term during short time period, nevertheless, Hirata
assumed that in the general equation, this term can be ignored, and
then, he considered a diffusion equation.

Starting from the classical Liouville equation, a general theory
of the irreversible diffusion-influenced reactions taking into account
non-Markovian effects was developed in Ref. 72. This theory sub-
stantially improved well-known Noyes and Wilemski–Fixman rate
theories, providing a new effective method for calculating the
rate coefficient at large and short time scales. Interested read-
ers are encouraged to refer to the recent review by Lee, where
the modified Wilemski–Fixman–Weiss approach in the theory of
diffusion-influenced reactions is discussed, particularly, at short
time scales.73

It is evident that the inertia effect in the short time
region may be investigated with the help of the more simple
Fokker–Planck–Kramers equation (FPKE) (see, e.g., Refs. 74–78 and
the references therein). In its turn, the appropriate FPKE can also be
derived from the corresponding stochastic Langevin equation.77,79

An important point is that these theories naturally resolved both
the above-mentioned paradoxes, compromising the Smoluchowski
theory. However, at the present time, nontrivial initial boundary-
value problems for the FPKE involving reactive boundary conditions
cannot be solved analytically.68,80

An efficient Brownian dynamics method for evaluating inertial
dynamic effects on diffusion-influenced reactions proposed by Lee
and Karplus in 1987 was extensively employed.80,81 “. . .it still fails to
give an exact account of the short-time scale reaction dynamics.”80

In a series of papers, Litniewski and Gorecki presented their
results for spherical molecules by means of another widely used
approach called molecular dynamics simulations (see Ref. 37 and
the references therein). Particularly, they showed that the SCK
model in the simplified version “fails completely for short times.”37,82

Moreover, Litniewski and Gorecki claimed that “within the sim-
plified model, it is impossible to describe the initial stage of
the process even qualitatively.” It was nevertheless pointed out
that the use of molecular dynamics simulations for a liquid of
identical soft spheres at a large number of particles N (typically
N ≙ 681 47282) allows us to obtain rather reliable quantitative results.
Subsequently, Piazza and co-authors (see Ref. 83 and the list of the
references therein) investigated numerically the rate coefficient for
the diffusion-influenced reactions with inertia, taking into account
the dependence on the volume fraction of sinks. They, particularly,
showed that the standard Smoluchowski theory “. . . is recovered

only at times greater than a characteristic time. . ., marking the
transition from the under-damped to the over-damped regime.”

Without going into detail, we shall simply note that
non-Fickian diffusion in a system where mobile particles B can
chemically react with static particles A according to rule (1) is also
considered within a persistent random-walk model.84 Furthermore,
in the last few decades, great progress has been made to describe
diffusion-controlled reactions of the form (1) by means of equa-
tions with both temporal and spatial fractional derivatives (see, e.g.,
Refs. 84–87 for lists of references).

A generalization of the Smoluchowski equation working for the
case of polyatomic molecule system was derived by Kasahara and
Sato.88 Although they reported concerning drawbacks for the rate
coefficient k(t) in the short-time scales, even the zero time paradox
has not been resolved within the scope of their approach, provided
that the Smoluchowski boundary condition holds. A good agree-
ment with the molecular dynamics simulations was found only for
k(t) in the long time region.88

D. Hyperbolic diffusion equation

Now, we can formulate the general physical problem on the free
diffusion with inertia of B particles to be solved.

Numerical estimates of the characteristic physical parameters
inherent tomany really existing systems in nature and industry show
that physical and chemical processes occur when the temperature
field is already in local equilibrium.47 If one denotes the thermal
relaxation time as τT , it may be assumed that τT ≪ τD and for all
points (x, t) ∈ Q− of the isotropic and homogeneous host medium.
Indeed, according to the physical data presented by Sieniutycz,89 in
typical liquids for particles B of diameter range 10−7–10−3 m, we
have the corresponding relaxation time ranges: (a) τT ≙ 10

−11–10−13

s and (b) τD ≙ 10
−8–3 s. Therefore, it may be reasonably assumed

that the temperature field T(x, t) obeys the common parabolic
heat equation. Simultaneously, the diffusive flux field still remained
time-dependent and establishes its equilibrium values.18

In addition, we suppose that the reaction occurs on a much
shorter time scale as the time scales of relaxation phenomena, inher-
ent to the given host medium. In addition, we expect that the
hyperbolic theory will work well for t ≳ τD too. Indeed, the prevail-
ing view today is that classical diffusion theory works well only for
physical systems characterized by small values of the host medium
diffusion relaxation time τD (τD → 0) or for time values t ≫ τD
when the corresponding constitutive relation [see Eq. (38)] has the
form of the first Fick’s law (11). Moreover, it is common knowledge
that hard-sphere simulations and a number of experiments showed
that often the description with the help of the classical diffusion
equation fails even for timescales much larger than τD.90

To describe inertial effects mathematically, we shall use the
most popular approach called the Cattaneo–Vernotte differen-
tial model, which is based on the linear system of coupling
equations.33,47,54 Following this model for scalar ρ(x, t) and vec-
tor j(x, t) fields given in the exterior of the cylindrical domain Q−,
we have the system of continuity equation and constitutive relation,
respectively,

∂ρ

∂t
+∇ ⋅ j ≙ 0, (37)

j + τD
∂j

∂t
≙ −D∇ρ. (38)
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The second term in the left-hand side of Eq. (38) is called the
diffusion-flux relaxation term,91 and due to this, this equation takes
into account the relaxation to local equilibrium of the diffusion flux.
Moreover, time derivative τD∂j/∂t can also be regarded as a diffusion
inertia, responsible for the inertial effects. It is clear that, provided
that this term vanishes under condition τD ≙ 0, one retrieves here
the classical first Fick’s diffusion law. Hence, simultaneously, using
Eqs. (37) and (38), we can study diffusion behavior for the time
range47

τT ≪ t ≲ τD. (39)

Note that continuity equation (37), being, in fact, a form of some
conservation law, is an exact equation, whereas constitutive relation
(38) is an approximation based on some physical assumptions. For
example, constitutive relation (38) may be considered as a partic-
ular case of a general theory of heat and mass transfer with finite
speeds proposed by Gurtin and Pipkin.92 System of Eqs. (37) and
(38) may be derived from more fundamental theories, e.g., from
Boltzmann and Born–Green equations for rarefied gas and dilute
solutions in liquid.93 It was also shown that Eqs. (37) and (38) corre-
spond to the first and the second moment equations under solution
of the FPKE for Brownian particles.94 Moreover, it is important to
remember that the constitutive relation (38) may be treated as a
differential equation, which is equivalent to introduce memory
effects within the system. It is evident that constitutive relation
(38) is a particular case of the so-called dual-phase-lag models.56

However, one should emphasize that among other known models,
resolving the paradox of infinite speeds, the Cattaneo–Vernotte
differential model (38) is the most obvious and simple generaliza-
tion of Fick’s first law,95 which contains the time derivative of the
diffusive flux along with the flux itself.

Remark 11. Note that in hyperbolic diffusion theory, the consti-
tutive relation (38) is most often termed Cattaneo–Vernotte equation
and sometimes Maxwell–Cattaneo equation96 following the terminol-
ogy of much more elaborated hyperbolic heat theory. However, we
believe that in the case of diffusion transport, it is more fair to call
this constitutive relation as the Fock–Davydov equation, taking into
account that for diffusion, it was derived independently andmuch ear-
lier by Fock in 1926 and by Davydov in 1935, respectively (see, e.g.,
discussion in Ref. 97).

Combining Eqs. (37) and (38) in the domain Q−, one can
readily obtain the following HDE (or telegrapher’s equation98):

τD
∂
2ρ

∂t2
+
∂ρ

∂t
≙ D∇

2ρ. (40)

One can see that Eq. (40) as τD → 0 may be treated as a singular
perturbed pure diffusion equation,

∂w

∂t
≙ D∇

2
w. (41)

In the shorthand notation, HDE (40) may be recast as follows:

◻ ρ(x, t) ≙ − 1
D

∂

∂t
ρ(x, t), (42)

where the box symbol denotes the d’Alembertian operator:
◻ ∶≙ ∂

2/c2∂t2 −∇2. Thenceforth, c stands for the wave velocity and
∇

2 is the 3D Laplacian of a scalar field. A simple inspection of
Eqs. (40) and (42) shows that c2 ∶≙ D/τD (see Sec. VIII for details).

Remark 12. Note in passing that Eq. (40) is a particular case of
the general telegrapher’s equation,1,99–101

τD
∂
2ρ

∂t2
+
∂ρ

∂t
+ bρ ≙ D∇2ρ, (43)

where b is a constant.

We shall study here the diffusion problems with the reaction
for the linear HDE only. For a discussion of a general nonlinear
hyperbolic reaction–diffusion equation, see, e.g., Ref. 102.

Equations (40)–(43) are also known in the literature (especially
in the mathematical one) as the linear damped-wave equation.50 Evi-
dently, for Eqs. (40)–(43), terms with ∂ρ/∂t are the damping terms
that dampen the diffusive wave motion. Formally, the damping term
may be removed by means of the standard substitution,98

ρ(x, t) ≙ exp(−t/2τD)v(x, t). (44)

Original HDE (42) is reduced to another useful form,

◻ v(x, t) ≙ 1

4c2τ2D
v(x, t). (45)

At first glance, it would seem that an approach based on the
FPKE is the most preferable for the use of the HDE. However, it
turns out that this statement is not always the case. First of all,
the above method has the grave disadvantage described in Ref. 78:
“. . .no exact solution has been derived for the FPKE under the
boundary condition suitable for the reaction dynamics problem.”

Remark 13. Most remarkably, surprisingly enough, it was found
that often the HDE (40) behaves much more satisfactory than even
kinetic FPKE, which is used to derive the HDE.74

A particular emphasis was stressed on this fact by Jou et al. in
their famous book (Ref. 91), where a plausible explanation of this
interesting behavior has also been suggested. Indeed, concerning
this context, they claimed the following:91 “The reason for the much
more satisfactory behavior of the telegrapher equation is that it pre-
serves the characteristic speed of the walker, d/t0, in contrast to the
Fokker–Planck equation, where this information is lost.” In other
words, the more general FPKE describes the short-time behavior of
B particles as worse than its approximation HDE. This important
fact is known as the Rosenau paradox by the name of Rosenau, who
revealed it in 1993.103

E. Rice’s formula

As stated above, another substantial revisit of Smoluchowski’s
theory valid for short-times was carried out by Rice in Ref. 1. It is
significant that since then, it was generally agreed that the theory
developed by Rice put an end to the study of relaxation effects within
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the framework of the HDE (40) approach. He solved the corre-
sponding hyperbolic initial boundary value problem with respect to
the time-dependent probability function ρ(x, t) and, using it, found
analytically the reaction rate coefficient. Moreover, Rice compared
his result with the rate coefficient known from the classical theory of
Smoluchowski (30).

In Ref. 1, Rice, referring to his unpublished results of 1978,5

presented without any evidences the formula for the rate coeffi-
cient, which extends the classical Smoluchowski’s expression (30).
According to the general theory,91 this extension should work well,
including short time values, i.e., for 0 < t ≲ τD, and therefore, it
must describe the influence of the inertial effects. Concerning this
formula, in page 330, he writes as follows: “Rice . . . solved the
field-free form of the telegrapher’s equation for the Smoluchowski
boundary conditions, supplemented by

∂ρ(x, t)
∂t

∣
t→0+

→ 0, (46)

to find the rate coefficient as

kR(t) ≙ k0S{[1 − exp(− t

τD
)] + ( tD

τD
)1/2 exp(− t

2τD
)I0(− t

2τD
)}
(47)

in which I0(x) is the first kind modified Bessel function of order
zero.” In addition, as we have mentioned above, to distinguish
the hyperbolic diffusion model, we use here the following notation
ρ(x, t) for the time-dependent probability function.

However, it is significant to note here that expression (47)
behaves in a completely different manner to the exact formula (see
Fig. 2 and discussion in Sec. VIII).

We have pointed out in Sec. I that Rice’s formula (47) is
approximate. We also mentioned that by means of the approximate
formula, erroneous conclusions were made about the applicability
of the approach based on the use of the HDE, which, in its turn,
brought into discredit the whole research direction for many years.
The clarification of this point is very interesting by itself and besides
useful as a cautionary example dealing with hyperbolic diffusion
problems. Therefore, this question will be detailed and analyzed in
Sec. VIII.

F. Hyperbolic local diffusive flux

In the case of hyperbolic diffusion, the local flux j(x, t)
was not determined by the distribution ρ(x, t) with the help of
explicit formula (11). To find it, we should solve the relevant
Cattaneo–Vernotte differential equation (38). It is evident that to
obtain a unique solution, we have to supplement this equation with
some physically reasonable initial condition for the local flux,

j(x, t)∣t→0+ → j0(x) in Ω
−, (48)

where j0(x) ∈ C1(Ω−) is the initial field of the local flux. Thus, we
posed the Cauchy problem [(38) and (48)], which has the general
solution,104

j(x, t) ≙ j0(x) exp(− t

τD
) −D∫ t

0
K
+(t − ζ; τD)∇ρ(x, ζ)dζ in Q

−.
(49)

Hence, it is obvious due to the non-Fickian memory term, where

K
+(t; τD) ≙ 1

τD
exp(− t

τD
) (50)

is the so-calledmemory kernel.79

The local diffusion flux j(x, t) at a fixed space-time point (x, t)
depends on the entire history of the distribution gradient ∇ρ(x, t)
establishing from origin time instance t ≙ 0 to a given time value t.

Provided that we know the distribution ρ(x, t) and initial local
flux j0(x), the flux field j(x, t) may be calculated with the help of
Eq. (49). Thus, it is important to keep in mind that Eq. (49) is a
new non-Fickian definition for the local diffusion flux, which one
should use in general formula (9) to calculate the desired reaction
rate coefficient k(t).

In its turn, equation of continuity (37) and Eq. (49) in Q−

lead to the following inhomogeneous delayed integro-differential
equation:

∂ρ(x, t)
∂t

−D∫
t

0
K
+(t − ζ; τD)∇2ρ(x, ζ)dζ ≙ −∇ ⋅ j0(x) exp(− t

τD
).

(51)

Again, here, we have a memory term in the left-hand side. One can
see that in the limiting case as τD/t → 0, Eq. (51) turns into the
classical second Fick’s equation of diffusion.

It follows directly from Eq. (51) a significant connection

∂

∂t
ρ(x, t)∣

t→0+
→ −∇ ⋅ j0(x) in Ω

−. (52)

From a physical point of view for the trapping problem, one
should set the trivial initial condition,25,26,69,105,106

j0(x) ≡ 0 in Ω
−. (53)

In this connection, e.g., Aziz and Gavino asserted the following: “An
assumption of no initial flow j(0) ≙ 0 is consistent with our physical
picture since there is no preferred direction for the initial velocity of
each particle.”107 Simply speaking, we naturally assume that initially
all particles B, being at the rest for early times t < 0, due to inertial
effects when τD > 0 as m > 0 [see Eq. (35)] cannot start to move at
t ≙ 0.

Since we study here Brownian diffusion of point-like reactants
in the exterior of a spherical sink Ω

−, we should take into account
the spherical symmetry of the problem under consideration. Hence,
we can project the general equation [Eq. (38)] with initial condition
(53) onto the radial axis,

(1 + τD ∂

∂t
)jr(r, t) +D∂ρ(r, t)

∂r
≙ 0 in Q

−, (54)

jr(r, t)∣t→0+ → 0 in Ω
−, (55)

where jr is the radial component of j. The solution to the Cauchy
problem [(54) and (55)] in Q− is given by the convolution

jr(r, t) ≙ −D∫ t

0
K
+(t − ζ; τD)∂ρ(r, ζ)

∂r
dζ, (56)

and (52) takes the following simplest form:

∂

∂t
ρ(r, t)∣

t→0+
→ 0 in Ω

−. (57)
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VI. HYPERBOLIC CAUCHY–DIRICHLET PROBLEM

Let us formulate the requirements imposed on the model used
to calculate the rate coefficient.

(a) We intend to calculate analytically the rate coefficient within
the scope of Smoluchowski’s trapping model for the diffusion-
controlled reactions occurring in stagnant, homogeneous, and
isotropic media, taking into account the finite relaxation time
of local diffusive fluxes.

(b) There are several approaches to attack the posed problem ana-
lytically, whereas mostly the theoretical studies concerning the
problems on heat and mass transfer with inertial effects are
based on the initial boundary-value problems posed for the
HDE (40). Hence, in the present study, we shall follow this
commonly accepted method.

A. Statement of the problem

The statement of the relevant external Cauchy–Dirichlet prob-
lem for the HDE is quite similar to the classical case. Inasmuch as
the HDE is of second order in t, two initial conditions for ρ(r, t)
have to be imposed. Expression (57) is evidently one of these two
conditions. Again, using spherical coordinates, we write the HDE
(40) with corresponding initial and boundary conditions as follows:

τD
∂
2ρ

∂t2
+
∂ρ

∂t
≙ D

1

r2
∂

∂r
(r2 ∂ρ

∂r
) in Q

−, (58)

ρ(r, t)∣t→0+ → 1 in Ω
−, (59)

∂ρ(r, t)
∂t

∣
t→0+

→ 0 in Ω
−, (60)

ρ(r, t)∣r→R+ → 0 in R+, (61)

ρ(r, t) ∈ L∞(Q−). (62)

An important point is that for the problem under consideration, ini-
tial functions in initial conditions (59) and (60) cannot be chosen
independently. In addition, on the reaction surface, as in the clas-
sical diffusion case, we imposed the Smoluchowski ideal trapping
boundary condition (61).

One can see that in the singular limit τD → 0, the posed exter-
nal hyperbolic Cauchy–Dirichlet problem [(58)–(62)] goes to the
corresponding parabolic problem [(4)–(7)].98

B. Solution to the problem

It is common knowledge that hyperbolic diffusion problems are
more complicated than their counterpart classical diffusion prob-
lems. In this context, it is pertinent to cite here the article by
Kartashov,6 which directly aimed at the analytical solutions of the
similar hyperbolic heat-conduction problems. “Generalized trans-
fer problems differ significantly from classical ones . . . being more
complicated . . . Hence quite modest progress was made in finding
exact analytical solutions of boundary value problems for Eq. (40)

and mainly for the semi-infinite domain {x > 0} × {t > 0} at con-
stant boundary functions and zero boundary conditions.33 At the
same time, in some cases the solutions found contain errors . . ..”
Kartashov was echoed by Masoliver,100 who wrote about the deter-
mination of the fundamental solution to the HDE (40) as follows:
“Although this solution has been known since a very long time ago,
its derivation remains quite obscure.”

Here, we just briefly review known in literature mathematical
methods used to solve the spherically symmetric Dirichlet initial
boundary value problem for the HDE. We should observe that,
by means of the deep mathematical analogy between thermal and
diffusion processes, some fruitful theoretical ideas may be directly
borrowed from the much more advanced hyperbolic theory of the
heat transfer.106

Our mathematical approach is analytical and based on a
straightforward reduction of the external hyperbolic diffusion prob-
lem with Laplacian possessing spherical symmetry to, formally, the
case of the relevant diffusion problemwith semi-infinite slab geome-
try carried out by means of the well-known transform (15) (see, e.g.,
Ref. 14). We used this reduction method because the analytical solu-
tions for both finite and semi-infinite slabs are currently thoroughly
elaborated in the literature (see Sec. VI).

The use of 3D potentials for the solution of the general
hyperbolic initial boundary value problems is worthy of special
attention.108 Another powerful approach to tackle these problems
is based on some probabilistic representations of the desired solu-
tions and uses the exact solutions of the wave equation by the
Monte Carlo method.109 However, as in previous classical diffusion
case, it is expedient to transform the posed Cauchy–Dirichlet prob-
lem [(58)–(62)] to some simple dimensionless problem, changing
the independent variables according to Eq. (17). Then, we again
look for the required solution in the form of the ansatz similar to
(16). This allows us to recast the original Cauchy–Dirichlet problem
[(58)–(62)] in a more convenient form of an auxiliary problem,
describing, formally, the trapping of B’s by a plane wall boundary
in a semi-infinite slab,

ϵ
∂
2u

∂τ2
+
∂u

∂τ
≙
∂
2u

∂x2
in Q

−

x , (63)

u(x, τ)∣τ→0+ → 0, x ∈ R+, (64)

∂u(x, τ)
∂τ

∣
τ→0+

→ 0, x ∈ R+, (65)

u(x, τ)∣x→0+ → 1, τ ∈ R+, (66)

u(x, τ) ∈ L∞(Q−x ). (67)

Here, we introduced an important small dimensionless para-
meter ϵ, which is equal to the ratio of characteristic velocity
correlation (35) and diffusion (18) times,

ϵ ∶≙ τD/tD ≪ 1. (68)

Thus, the above auxiliary hyperbolic problem [(63)–(67)] is a
singular perturbed one, and
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u(x, τ)→ v(x, τ) as ϵ→ 0. (69)

Several approaches to obtain the analytical solution of the
Cauchy–Dirichlet problem [(63)–(67)] for the finite and semi-
infinite slab geometry were presented by many authors (see, e.g.,
Refs. 6, 25–27, 55, and 110–115 and the references therein).
Nevertheless, one can infer that the standard operational method
is most commonly performed to find the analytical solution of this
problem.30

Remark 14. It is worth noting here that the reader should bear
in mind the complete inconsistency in the notations used by different
authors.

Hyperbolic initial boundary value problems for diffusion
in non-rectangular coordinates are investigated much less.6 “For
domains of the canonic type (an infinite plate, a continuous or
hollow cylinder, a continuous or hollow sphere, etc.), exact solu-
tions of hyperbolic models of transfer are still unknown, and this
problem essentially remains open, including the correct statement
of boundary value problems for the hyperbolic equations.”115

The hyperbolic Cauchy–Dirichlet problem was solved for
infinite, cylindrical, and spherical host media using the method
of relativistic transformation of variables by Sharma in 2007.27,53

Nevertheless, attention should be drawn to the fact that, as far as
we know, in the previous works, a similar spherically symmetric
Cauchy–Dirichlet problem, which takes into account inertial effects,
was solved mostly numerically (see, e.g., Refs. 29 and 96).

The inner Cauchy–Dirichlet problem for hyperbolic diffusion
was treated inside a sphere with the help of the separation of variable
method (see, e.g., Refs. 52 and 116). An external hyperbolic diffusion
problem for 3D space outside a sphere with spherically symmetric
Laplacian was studied analytically by means of the Laplace trans-
form approach.117 However, the boundary condition imposed on the
sphere is rather sophisticated, and therefore, the obtained result is
too far from our present interest.

In this regard, it is worth mentioning Ref. 118 where the
corresponding 3D inner problem in spherical coordinates was
solved.

Applying Laplace’s transform (A12) to the hyperbolic
Cauchy–Dirichlet problem [(63)–(67)], one can easily arrive at

d2

dx2
u(x; s) − s(1 + ϵs)u(x; s) ≙ 0, x ∈ R+, (70)

u(x; s)∣x→0+ → 1/s ∈ C, (71)

u(x; s)∣x→+∞ ⇉ 0, x ∈ R+. (72)

It is clear that the solution to the boundary value problem
[(70)–(72)] reads

u(x; s) ≙ 1

s
exp[−√s(1 + ϵs)x], x ∈ R+. (73)

Hence, one can see that the condition of small wave effect is ϵ∣s∣≪ 1,
and therefore, in this case, classical diffusion solution (27) works
well.

Taking inverse Laplace transform in (73), we obtain the desired
solution u(x, τ) ≙ L −1{u}(τ). Thus, the solution of the auxiliary
Cauchy–Dirichlet problem [(63)–(67)] in Qx may be written as110

u(x, τ) ≙ H(τ − x√ϵ)[exp(− x

2
√
ϵ
)

+
x

2
√
ϵ∫

τ

x
√

ϵ
I1( 1

2ϵ

√
ζ2 − ϵx2) exp(−ζ/2ϵ)√

ζ2 − ϵx2
dζ] (74)

or, using an evident property of Heaviside’s step functionH(x) (A1),
in another equivalent form,

u(x, τ) ≙ H(τ − x√ϵ) exp(− x

2
√
ϵ
)

+
x

2
√
ϵ∫

τ

0
I1( 1

2ϵ

√
ζ2 − ϵx2)(ζ2 − ϵx2)−1/2

× exp(− ζ

2ϵ
)H(ζ − x√ϵ)dζ. (75)

Rewriting ansatz (16) with the help of solution u(x, τ) (74) and tak-
ing into account connection (17), one obtains the explicit form of the
solution ρ(r, t) to the original Cauchy–Dirichlet problem (58)–(62).
In this way, the following proposition holds true.

Theorem 3. Solution ρ(r, t), describing the hyperbolic diffusion
of B particles toward a spherical perfectly absorbing sink [(58)–(62)],
is connected with appropriate auxiliary solution u(x, τ) for hyperbolic
diffusion of B’s to a perfectly absorbing semi-infinite slab [(63)–(67)]
by means of ansatz

ρ(r, t) ≙ 1 − R

r
u(x, τ), (76)

where variables x and τ are given in (17).

Direct inspection shows that general formula (23) holds for the
hyperbolic Cauchy–Dirichlet problem (58)–(62) as well.

VII. ESTIMATION OF THE REACTION RATE
COEFFICIENT

Knowing exact B particle distribution function (76), one
embarked on the accurate analytical calculation of the desired reac-
tion rate coefficient for the diffusion-controlled reactions due to
hyperbolic diffusion.

A. General formula for the rate coefficient

Let us derive an important corollary to Theorem 3. Plainly, the
general expression (9) is k(t) ≙ −4πR2jr(r, t), and with the aid of
known local flux (56), the required reduced rate coefficient k∗(t) in
the case of hyperbolic diffusion reads

k
∗(t) ≙ R

τD
exp(− t

τD
)∫ t

0
exp( ξ

τD
) ∂ρ(r, ξ)

∂r
∣
r→R+

dξ. (77)
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Utilizing ansatz (76), we can easily recast Eq. (77) in a more
convenient form,

k
∗(t) ≙ 1

τD
exp(− t

τD
)∫ t

0
exp( ξ

τD
)[1 − ∂u(x, ξ)

∂x
∣
x→0+
]dξ, (78)

whereas it is clear that the first integral in the right-hand side, which
we denote as k∗c (t), describes curvature effects due to the sphericity
of the sink reaction surface. One can see that

k
∗

c (t) ≙ [exp( t

τD
) − 1] exp(− t

τD
). (79)

Hence, we have the following.

Corollary 2. For spherically symmetric hyperbolic diffusion
transfer, the formula for the reduced rate coefficient (77) yields

k
∗(t) ≙ k∗c (t) + k∗x (t), (80)

where k∗x (t) is a part, corresponding to the total rate coefficient upon
the wall of the semi-infinite slab,

k
∗

x (t) ≙ − 1

τD
exp(− t

τD
)∫ t

0
exp( ζ

τD
) ∂u(x, ζ)

∂x
∣
x→0+

dζ. (81)

We emphasize that (78) and (81) directly imply an important
property,

lim
t→0+

k
∗(t) ≙ lim

t→0+
k
∗

x (t) ≙ 0. (82)

This property is an evident consequence of the initial condition for
the local flux (53), and they are rather reasonable since at t ≙ 0 Brow-
nian particles cannot be trapped by the absorbing surfaces due to
inertial effects.

B. Simplified derivation of the rate coefficient
on the wall

At first glance, it would seem that the reduced reaction rate
coefficient for the semi-infinite slab k∗x (t) can be very easy calculated
directly, without knowing the explicit expression for the function
u(x, t) in the physical space (74). Applying the Laplace transform
to the general expression at issue (81) by means of convolution
theorem and formula (A15), we readily obtain Laplace’s transform
of the desired rate coefficient,

k
∗

x (s) ≙ − 1

1 + ϵs

∂

∂x
u(x; s)∣

x→0+
. (83)

In other words, it seems reasonable to simplify significantly the cal-
culations required to derive the expression for the rate coefficient
from general formula (81) by taking the limit as x → 0+ in the right-
hand side derivative of Eq. (83) before Laplace’s transform inverse.
It is pertinent to note here that in the classical diffusion case, this
procedure leads to correct expression for the rate coefficient [see
formulas (25) and (27)]. Unfortunately, this way appeared to be
incorrect for the case of hyperbolic diffusion, leading to an inexact-
ness in the required formula for the reaction rate coefficient. Let us
show this.

Introducing the function

K(x; s) ∶≙ − 1

1 + ϵs

∂

∂x
u(x; s),

we, obviously, get

K(x; s) ≙ 1√
s(1 + ϵs) exp[−

√
s(1 + ϵs)x], (84)

k
∗

xR(s) ∶≙ K(0+; s) ≙ 1√
s(1 + ϵs) . (85)

Applying here the Tauberian theorem for Laplace’s transform, one
obtains

lim
s→∞

sK(0+; s) ≙ 1√
ϵ
≠ 0, (86)

k
∗

xR(t) ≙ L −1{K(0+; s)} ≙ R√
τDD

exp(− t

2τD
)I0( t

2τD
). (87)

Moreover, it follows from property (A8) that in physical space,

lim
t→0+

k
∗

xR(t) ≙ 1/√ϵ ≙ R/√τDD ≠ 0. (88)

One can see that result (86) [or (88)] is in contradiction with trivial
initial condition (82).

Using general representation (80) and formula (85), one arrives
at the relation in Laplace’s domain,

k
∗

R(s) ≙ 1

s(1 + ϵs) + 1√
s(1 + ϵs) . (89)

Hence, inverting here the Laplace transform by means of formulas
(A16) and (A17), we reproduce the known Rice formula (47) in the
physical space.

C. Straightforward calculation of the rate coefficient

Now, let us give a thorough derivation of the reduced rate coef-
ficient k∗(t)with the help of an explicit solution in the physical space
ρ(r, t). According to Corollary 2, our task is simplified and reduced
to the calculation of the trapping rate on a semi-infinite slab surface
k∗x (t) (81).

With the aid of auxiliary solution (74) and recalling result (A4),
we can easily find the required limit,

−
∂

∂x
u(x, τ)∣

x→0+
≙

1

2
√
ϵ
−

1

2
√
ϵ∫

τ

0
ζ−1I1( ζ

2ϵ
) exp(− ζ

2ϵ
)dζ.

(90)

One can calculate the integral here by means of the change of vari-
able z ≙ ξ/2ϵ and using known quadrature (A10) at ν ≙ 1. To easily
compare our result with the Rice formula (47), here, we will carry out
calculations of the rate coefficient for the real time value t. Returning
the obtained result to the original variables (r, t) and substituting it
into (76), we have

−
∂

∂x
u(x, t)∣

x→0+
≙

R

2
√
τDD

exp(− t

2τD
)[I0( t

2τD
) + I1( t

2τD
)].
(91)
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Finally, one can obtain the explicit form of integral in Eq. (81). Using
Eq. (91) with the help of auxiliary relation (A9), one arrives at

∫
t

0
exp( ζ

2τD
)[I0( ζ

2τD
) + I1( ζ

2τD
)]dζ

≙ 2τD[exp( t

2τD
)I0( t

2τD
) − 1]. (92)

Note in passing that taking into account connection (76), the
reduced rate of particles trapping by a plane wall {x ≙ 0} reads

k
∗

x (t) ≙ exp(− t

τD
){ R√

τDD
[exp( t

2τD
)I0( t

2τD
) − 1]}. (93)

Substituting this result into (80), one finds the required formula for
the reduced rate coefficient,

k
∗(t) ≙ exp(− t

τD
){[exp( t

τD
) − 1]

+
R√
τDD
[exp( t

2τD
)I0( t

2τD
) − 1]}. (94)

One can see that in contrast to Eqs. (87) and (47), the derived
formulas [(93) and (94)] possess (82) as should be.

Taking (87) and (93) into consideration, it is clear that the error
in the rate coefficient k∗R(t) (47) arose because of the apparent fact
that Lemma 1 on commutativity (28) is not valid for the hyperbolic
diffusion case, i.e.,

lim
x→0+

∂

∂x
L
−1{u(x; s)} ≠ L −1{ lim

x→0+

d

dx
u(x; s)}. (95)

Obviously, the basic reason for this property is that s0 ≙ −1/ϵ
is a singular branch point of the function K(x; s) in Eq. (84). Note
also that operations in relation (95) become commutative in the
particular case of Fickian kinetics (28), i.e., when s0 → −∞.

VIII. DISCUSSION

A. Wave properties of the solution

It follows directly from Theorem 3 that the time evolution of
the diffusive field in the vicinity of a spherical sink is the same as
that around a flat ideally absorbing wall. Thus, for both the obtained
solutions around the wall u(x, τ) (74) and around the sink ρ(r, t)
(76), there is a sharp propagating diffusive front, spreading in space
with a constant finite velocity,

c ≙

√
D

τD
≙ vD

√
tD

τD
≙ vDϵ

−1/2, vD ≙
D

R
, (96)

where vD is a characteristic diffusion velocity, sometimes used in the
theory of the pure diffusion transfer.24 Mathematically, the diffusive
front is a jump discontinuity of the function ρ(r, t) [or u(x, τ)] (76).
What is more, taking into account that usually tD ≫ τD, an interest-
ing relation between velocities c≫ vD follows from (96). Velocity c
is a constant for fixed intrinsic parameters of the given host medium:
D and τD, so the diffusive front kinematics is determined by the
relation

r(t) ≙ R + ct, (97)

i.e., diffusive wave spreads to the right, away from the sink surface.
It is also clear from Eq. (63) that pure parabolic diffusion case means
ϵ→ 0, and therefore, we get the infinite speed paradox c→∞. In
terms of diffusion wave motion, τD is the time over which the B
particle recalls in which direction it was originally traveling.1

Moreover, taking into consideration relations (96) and (97),
one can see that for all t > 0, there exists the front of the solu-
tion ρ(r, t) amplitude, which in course of time decays exponentially
accordingly to the law ∝ exp(−t/2τD). Hence, from this point of
view, the relaxation time τD may be treated as a characteristic time of
the diffusive wave damping. Thus, in course of time (mathematically
as t → +∞), HDE (58) turns into the classical parabolic diffusion
equation (4); at that, both solution ρ(r, t) (76) and reaction rate
coefficient k∗(t) (94) tend to the corresponding Smoluchowski solu-
tion ρS(r, t) (29) and rate coefficient k∗R(t) (30). It is worth noting
that this important property is a direct consequence of known in
mathematical physics the so-called diffusion phenomenon.

Let us take a brief look at the diffusion phenomenon. First of all,
note that it seems to us that the term “diffusion phenomenon” is not
quite successful. Indeed, very often, in physical literature, the con-
cept diffusion phenomenon is understood just as a set of problems
relating to diffusion (see, e.g., Refs. 119 and 120).

Definition 4. The function ρ(r, t) possesses diffusion phe-
nomenon if ρ(r, t) ∼ w(r, t) uniformly as t → +∞ and parameter τD
is a finite number.

Simply stated, the diffusion phenomenon is an asymptotical
relation between hyperbolic and parabolic diffusion models. We
emphasize that this is not so evident mathematical concept as it
seems at a glance. Particularly, one can prove that u(x, τ)→ v(x, τ)
as τ → +∞ [compare this with Eq. (69)] such that for the initial
conditions, the following relation holds true:

v(x, τ)∣τ→0+ ≙ [u(x, τ) + ∂u(x, τ)
∂τ

]∣
τ→0+

.

In our opinion, the most simple treatment of the diffusion phe-
nomenon was given with the aid of a Tauberian theorem for Laplace
transforms.121 We suggest the readers who are interested in the
detailed mathematical study of the diffusion phenomenon to refer
the 2018 book by Ebert and Reissig.34

On the other hand, one can show that, at least for time values
0 < t ≪ τD, the HDE (58) may be approximated by the standard
wave equation, and therefore, its solution ρ(r, t) (76) describes the
ballistic regime of the Brownian motion of particles Bmentioned in
Sec. I. Thus, ballistic and diffusion regimes are naturally included
in the hyperbolic diffusion model as its particular cases as t → 0
and as t →∞, respectively. An additional point to emphasize here
is that sometimes “based on the stochastic approach using Langevin
equations, the active particle motion is split into a diffusive part and
a ballistic part.”10

B. Some remarks on Rice’s approximation

The above thorough analytical calculation of the rate coefficient
leads to Eq. (94). Using this formula and asymptotic expansion for
the modified Bessel functions of the first kind (A11), one can obtain
Smoluchowski’s rate coefficient for any fixed time t (30) when the
relaxation time vanishes, i.e., as τD → 0. Moreover, we have found
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out that the exact value of the reduced rate coefficient (94) differs
from the known Rice approximation k∗R(t) (47) 1 by the last term,

k
∗(t) ≙ k∗R(t) − R√

τDD
exp(− t

τD
). (98)

Hence, it is evident that we have a uniform estimate

k(t) < kR(t) for all t > 0. (99)

In this way, Rice’s approximation kR(t) is a uniform upper bound
for the exact rate coefficient.

One can see that basic property (82) does not hold for Rice’s
rate coefficient (47), but for τD > 0, it possesses property (88), i.e.,

0 < lim
t→0+

k
∗

R(t) ≙ R√
τDD

< +∞. (100)

Therefore, the Rice approximation (47), while successfully resolving
the zero time paradox, nevertheless, does not satisfy the correct
initial condition (82). Hence, formula (47) is not an exact expression
for the rate coefficient.

Then, the natural question arises as to: “Why the latter fact was
not detected until now?” It was really hard to detect an inexactness
in formula (47) because it gives correct limiting cases as t/τD → +∞,
i.e., when (a) for all fixed t > 0 as τD → 0 and (b) for all fixed τD > 0
as t → +∞ (diffusion phenomenon). Thus, in these two cases, Rice’s
expression (47) is reduced to the correct classical Smoluchowski
result (30). It is rather important that Rice’s approach also resolves
the paradox of infinite speed.Moreover, provided that one deals with
finite values of diffusive relaxation time τD, relation (100) shows that
the Rice approximation, at least formally, also resolves the zero time
paradox.

Another important question is as follows: “Why this inexact-
ness appeared?” It seems that the most plausible answer is as follows.
Rice applied a well-elaborated method for the derivation of the rate
coefficient in the case of classical diffusion theory, which fails in the
case of Cauchy–Dirichlet problems for the HDE. Really, we showed
in Sec. VII that Lemma 1 on commutativity (28) does not hold for
the hyperbolic diffusion [see(95)].

C. Comparison of rate coefficients for short times

To compare the behavior of the curves, which represent the
reduced rate coefficients for the different theories on the plot, it is
convenient to use the dimensionless form of the reduced rate coef-
ficient (94) written as a function of variable τ and one parameter ϵ
(68),

k
∗(τ) ≙ exp(− τ

ϵ
){[exp( τ

ϵ
) − 1] + 1√

ϵ
[exp( τ

2ϵ
)I0( τ

2ϵ
) − 1]},

(101)

k
∗

R(τ) ≙ k∗(τ) + 1√
ϵ
exp(− τ

ϵ
). (102)

For the illustrative plots, we chose most of the parameters as
in the paper by Rice et al.62 who considered particular examples
of diffusion-controlled reactions for the following physical mag-
nitudes of the diffusing B particles: D ≙ 10−8 m2 s−1, T ≙ 300 K,
m ≙ 5 ⋅ 10−26 kg, and friction coefficient ζ ≈ 7.14 ⋅ 10−14 kg s−1.

Hence, these values give for the relaxation time τD ≙ 0.7 ps [see
formula (35)]. In addition, it follows from Eqs. (35) and (36) that
the explicit relation for the dimensionless parameter ϵ (68) reads

ϵ ≙ mkBT/R2ζ2. (103)

For definiteness sake, we assume here that the reaction radius is
R ≙ 1.32 nm such that Eq. (103) gives ϵ ≈ 0.004. Note that for
another value R ≙ 0.5 nm used in Ref. 62, we get sufficiently larger
value of the parameter ϵ ≈ 0.028, and therefore, inertial effects seem
to be even more pronounced.

Figure 2 depicts a comparison of different approximations of
the reduced time-dependent reaction rate coefficients k∗A(τ) for
short time values. We plotted here the corresponding curves for the
classical Smoluchowski k∗S (τ) (24) and known Rice rate coefficients
k∗R(τ) (102) together with the rate coefficient k∗(τ) calculated in
the present paper (101) as functions of the dimensionless time τ. In
Fig. 2, one can see that the rate coefficient k∗(τ) first rises sharply
from the zero value at τ ≙ 0, attaining its local maximum. Then, on
decreasing, it intersects the curve for the classical Smoluchowski rate
at some point τc, which is determined by k∗(τc) ≙ k∗S (τc). When
τ > τc, rate coefficient k

∗(τ) rapidly approaches Rice’s approxima-
tion k∗R(τ) from below due to the fast decreasing of the correction

term ϵ−1/2 exp(−τ/ϵ) for τ > ϵ. Moreover, in course of time,
both these approximations, because of the diffusion phenomenon,
approach the classical Smoluchowski rate coefficient k∗S (τ) from
above, and what is more, for τ > τc, the two-sided estimate
k∗S (τ) < k∗(τ) < k∗R(τ) holds true. We also emphasize that obtained
reaction rate k∗(τ) behavior differs essentially from that of the Rice
formula k∗R(τ) for 0 ≤ τ ≲ 0.02≫ ϵ.

One can see that the course of the curves for the rate coefficients
k∗(τ) and k∗S (τ) in Fig. 2 qualitatively agrees with the conclusion
drawn by the authors of Ref. 122 that the standard SCK model over-
estimates the reaction rate coefficient for very short times τ < τc.

FIG. 2. Comparison of different approximations for the reduced rate coefficient
k∗

A
(τ) at ϵ = 0.004: k∗

S
(τ) is Smoluchowski’s rate coefficient (green dashed line),

k∗
R
(τ) is Rice’s approximation (blue dotted line), and k∗(τ) is the result of the

present work (red solid line).
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In addition, an important point is that some experimental results
support this conclusion. Really, Langhoff et al. were the first who
investigated picosecond recombination kinetics of laser-dissociated
iodine atoms in solution experimentally. To describe their results,
they applied classical diffusion theory67 and came to a conclusion
that Smoluchowski’s theory for the short times t < 200 ps predicts a
faster recombination rate than is actually measured (see, e.g., Refs. 1
and 123). Note in passing that the so-called cage effect was used to
explain the observed slow rate of recombination for iodine atoms;
however, this explanation seems to be rather questionable.1

IX. CONCLUDING REMARKS

A brief survey of the literature on the short-time behavior of
the diffusion-controlled rate coefficient, performed here, has made
it clear that the appropriate theory is not yet sufficiently advanced.
In this connection, we fully share the opinion of a number of
researchers that the hyperbolic Brownian diffusion model appeared
to be a reasonable generalization of the corresponding classical
parabolic diffusion model at least for a short time scale. Further-
more, we focused here our attention on two important theoretical
facts concerning the hyperbolic diffusion model. First, this model
reproduces the correct behavior of diffusing particles, including the
ballistic regime stage. Second, regardless of the diffusion relaxation
time magnitude τD, due to the diffusion phenomenon, both models
lead to the same results at long enough time values. It is important
to note that the deep results obtained in the mathematical litera-
ture on the diffusion phenomenon still remain unknown for most
researchers in physics and, particularly, in chemical physics.

Thus, the ultimate objective of this paper has been the devel-
opment of 3D hyperbolic diffusion theory for the irreversible bulk
diffusion-controlled reactions between small Brownian particles and
uniformly distributed perfectly absorbing spherical sinks. We have
shown that in many respects, this approach may be treated as a
natural generalization of the classical Smoluchowski diffusion
theory. In passing, we revealed here that the violation of the compat-
ibility condition between initial and boundary conditions resulted
in the known zero time paradox of the Smoluchowski diffusion
theory.

Contrary to the simple classical diffusion case, in this work, we
deal with the coupled system of the Cauchy problem [(54) and (55)]
for the local diffusion flux and the hyperbolic initial boundary value
problem under Smoluchowski’s boundary condition [(58)–(62)] for
the particle distribution function.

We showed that the posed 3D spherically symmetric hyperbolic
diffusion problem, similar to the corresponding classical parabolic
diffusion problem, may be reduced to an appropriate auxiliary 1D
problem, which, in turn, can be straightforwardly solved by means
of Laplace’s transform.

The performed analysis of the literature clearly brings out that
the existing theory of hyperbolic diffusion transfer often uses not
established yet terminology and, what is the most disagreeably it
contains, many misunderstandings and even various mathemati-
cal errors, whereas we paid a special attention to the inconsistency
in terminology, some misunderstandings, and a few mathematical
errors of the existing theory. Therefore, in this paper, we treated
different mathematical aspects of the posed hyperbolic problem in

some detail. However, a comprehensive critical analysis of the pub-
lished results on the topic under consideration is not included in
the tasks set in this article and will be considered in our subsequent
works.

The obtained exact hyperbolic particle distribution function
(76) predicts that the diffusion disturbance due to the sink presence
propagates as an attenuating wave with a constant speed (96). It has
been shown that the Smoluchowski theory is inappropriate for the
description of the inertial effects, which are significant for Brownian
particles at short times. Furthermore, known Rice’s formula (47) for
the time-dependent hyperbolic reaction rate coefficient was investi-
gated in full detail. Using solution (76), we obtained exact reaction
rate coefficient (94) and proved that rate coefficient (47), commonly
recognized earlier as an exact, turned out to be the only uniform
upper bound of the exact one. We also showed that Rice’s formula
does not obey the physically reasonable initial condition for the local
diffusive flux (53). In this connection, note that initial condition (53)
should be a key point for any reasonable physical theory of diffusion-
controlled reactions, describing inertial effects. Moreover, we have
proved that Rice’s formula, being a good approximation at large
enough times, does not work well for short time values. It has been
shown that this is due to the fact that Lemma 1 on commutativity
does not hold in the hyperbolic diffusion case.

We think that the existing gap between both computer sim-
ulations and experimental results on the one hand and theoretical
results on the other hand for the rate coefficients at short values of
time will be overcome by the use of the hyperbolic diffusion model
under appropriate boundary conditions, posed on the reaction sur-
faces. We also believe that the potentialities of various applications
of the hyperbolic diffusion model in chemical physics problems
(e.g., to describe ultrafast elementary photochemical processes in
liquid solution16) have far not been yet exhausted. That is why, we
hope that our study will encourage the ulterior beneficial use of the
hyperbolic diffusion model in theory of diffusion-controlled reac-
tions, while looking more closely at subtle mathematical pitfalls to
be avoided.

It is worth noting that in the present paper, we have consid-
ered only the case of reactions with the complete diffusion control.
A generalization to the case of Collins–Kimball boundary conditions
can be carried out straightforwardly, provided that they are modified
according to the hyperbolic diffusion model.6

We would like to finish our paper citing p. 335 of Rice’s book:1

“There is a strong indication that a model which better mimics the
velocity autocorrelation would give very interesting results.” and
below “Further developments are eagerly awaited.”
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APPENDIX: SOME AUXILIARY MATHEMATICAL FACTS
AND CALCULATIONS

In this appendix, for readers’ convenience, we recall some
important mathematical notations, definitions, formulas, and per-
form auxiliary calculations which we used in this paper.

1. Some properties of Heaviside’s step function

The Heaviside step function usually denoted by H(x) is a
piecewise function given on R, whose values are

H(x) ∶≙ ⎧⎪⎪⎨⎪⎪⎩
1 for x ≥ 0,

0 for x < 0.
(A1)

Consider a sequence of the real-valued differentiable func-
tions {hn}∞n=1 on R such that for each n ∈ N, we have a function
hn : R→ R of the form

hn(x) ∶≙ ∥1 + exp(−nx)∥−1. (A2)

One can see that a (a) sequence of functions {hn}∞n=1 is uniformly
bounded by unity ∣hn(x)∣ ≤ 1 for all n ∈ N and x ∈ R and (b) {hn}∞n=1
converges uniformly hn(x)⇉ H(x) as n→∞ almost everywhere on
R. Hence, {hn}∞n=1 is a fundamental sequence.124 It is well-known
that the equivalence class of fundamental sequences {hn}∞n=1 (A2)
is determined by the distribution called Heaviside’s step function
H(x).124

Thus, for any real-valued function g ∈ C1(R+) and for all t > 0,
consider the product

u(x, t) ∶≙ hn(t − x)g(x, t). (A3)

Hence, one readily gets

∂u(x, t)
∂x

∣
x→0+

≙ − lim
n→∞

h
′

n(t)g(0, t) +H(t) ∂g(x, t)
∂x

∣
x→0+

.

Using here the evident limit limn→∞h′n(t) ≙ 0, we arrive at the
important relation,

∂

∂x
H(t − x)g(x, t)∣

x→0+
≙

∂g(x, t)
∂x

∣
x→0+

. (A4)

2. Some results for the Bessel function

Recall that the Bessel function of the first kind of order ν may
be defined by its series expansion around y ≙ 0, i.e.,31

Jν(y) ∶≙ ∞∑
k=0

(−1)k
k!Γ(ν + k + 1)(12 y)

2k+ν

. (A5)

Function Iν(y) ≙ eνπiJν(iy), which are calling the modified
Bessel function of the first kind of order ν, is defined by the
expansion around y ≙ 0 for any ν ∈ Z+,

Iν(y) ∶≙ ∞∑
k=0

1

k!Γ(ν + k + 1)(12 y)
2k+ν

. (A6)

By means of expansion (A6), it may be readily shown that

I
′

0(y) ≙ I1(y), (A7)

Iν(0) ≙ ⎧⎪⎪⎨⎪⎪⎩
1 for ν ≙ 0,

0 for ν ∈ N.
(A8)

Using integration by parts and relation (A7), one can readily find

∫
y

0
exp(z)∥I0(z) + I1(z)∥dz ≙ exp(y)I0(y) − 1. (A9)

According to Ref. 125 for ν ≠ 1
2 , the following quadrature holds:

∫
y

0
ξ−ν exp(−ξ)Iν(ξ)dξ ≙ 1

2ν−1(2ν − 1)Γ(ν)
−

y1−ν exp(−y)
2ν − 1

∥Iν−1(y) + Iν(y)∥.
(A10)

Consider the asymptotic expansion of the modified Bessel
functions of the first kind for large values of argument as ∣y∣→ +∞,31

Iν(y) ∼ 1√
2πy

exp(y)(1 − 4ν2 − 1

8y
+ ⋅ ⋅ ⋅ .). (A11)

3. Some inverse Laplace transform formulae

The Laplace transform of a local integrable on R+ ∶≙ ∥0,+∞)
real-valued function g(x, t) with respect to time t ∈ R+ L{g}(s)
∶≙ g(x; s) is defined as

g(x; s) ≙ ∫ ∞

0
g(x, t) exp(−st)dt. (A12)

Here, s ∈ C is termed the Laplace transform variable and g(x; s)
is an analytical function in the complex domain ΩC ∶≙ {s ∈ C :
Res > 0}. Symbol L −1 denotes the inverse Laplace transform, i.e.,
L
−1{g}(t) ∶≙ g(x, t); at that, it is given by the Bromwich inversion

integral,126

g(x, t) ≙ 1

2πi
lim

ω→+∞
∫

c+iω

c−iω
exp(st)g(x; s), (A13)

where c ∈ R is a vertical contour in the plane C chosen so that all
singularities of the function g(x; s) are to the left of it.

J. Chem. Phys. 158, 044104 (2023); doi: 10.1063/5.0134727 158, 044104-18

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics

ARTICLE scitation.org/journal/jcp

For easy reference, we present here a few selected formu-
las for the inverse Laplace transforms, which are used in this
paper,12,30,53,126

L
−1{1

s
exp(−αs)} ≙ H(t − α), (A14)

L
−1{ 1(1 + αs)} ≙ 1

α
exp(− t

α
) (α ≠ 0), (A15)

L
−1{ α

s(s + α)} ≙ 1 − exp(−αt) (α ≠ 0), (A16)

L
−1{ 1√

s + α
√
s + β

} ≙ exp(−γt
2
)I0(σt

2
), (A17)

L
−1{exp[−χ√(s + 2α)(s + 2β)]}
≙ exp(−χγ)δ(t − χ) + σχ exp(−γt) I1(σ

√
t2 − χ2)√

t2 − χ2
H(t − χ),

(A18)

L
−1{1

s
exp[−χ√(s + 2α)(s + 2β)]}

≙

⎡⎢⎢⎢⎢⎢⎣
exp(−χγ) + σχ∫ t

χ
dξ exp(−γξ) I1(σ

√
ξ2 − χ2)√

ξ2 − χ2

⎤⎥⎥⎥⎥⎥⎦
H(t − χ).

(A19)

Here, α, β, and χ are real parameters such that γ ≙ α + β, σ ≙ α − β.
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