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ABSTRACT

We investigate the inertial dynamic effects on the kinetics of diffusion-influenced reactions by solving the linear diffusive Cattaneo system
with the reaction sink term. Previous analytical studies on the inertial dynamic effects were limited to the bulk recombination reaction with
infinite intrinsic reactivity. In the present work, we investigate the combined effects of inertial dynamics and finite reactivity on both bulk and
geminate recombination rates. We obtain explicit analytical expressions for the rates, which show that both bulk and geminate recombination
rates are retarded appreciably at short times due to the inertial dynamics. In particular, we find a distinctive feature of the inertial dynamic
effect on the survival probability of a geminate pair at short times, which can be manifested in experimental observations.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0147260

I. INTRODUCTION

The theoretical description of the diffusion-influenced reac-
tion rates has usually been based on the Smoluchowski diffusion
equation.1–6 This description captures explicitly two essential com-
ponents of the reaction process: the diffusive motion toward the
reaction surface and finite intrinsic reactivity on it. It has provided
an adequate explanation of many experimental observations and
computer simulation results, but it fails to give an exact account
of the short-time scale reaction dynamics.7 In the Smoluchowski
description, the value of the classical diffusive flux at a given spa-
tial point at a given time is assumed to depend only on the values at
the same point and the samemoment. In reality, however, relaxation
processes have a certain finite duration, i.e., they are inertial.

The validity of the diffusion-equation description has been
assessed bymolecular dynamics simulations8–11 or Langevin dynam-
ics simulations (that is Brownian dynamics simulations with inertial
effects included).12,13 The molecular dynamics simulations revealed
the effects of nondiffusive dynamic behavior in two aspects. The first
is the non-Markovian dynamic effect arising from the finite relax-
ation times of the solvent motions, and the second is the inertial

dynamic effect (also called the memory effect3) arising from the
finite velocity relaxation time of the reactant molecules. Therefore,
to assess the inertial dynamic effect separately, the use of Langevin
dynamics simulations is more appropriate.

Analytic theories that dealt with the inertial dynamic effect
were proposed by using the Fokker–Planck–Klein–Kramers equa-
tion (FPKKE). Unfortunately, analytical solutions to the FPKKE are
available only for a few simple cases.14–20 In the present work, we
will take into account inertial dynamic effects by developing a theory
based on the linear diffusive Cattaneo system21–25 with the reaction
sink term.

It is customary to distinguish two different cases of recombi-
nation with respect to time ranges: (a) first-order geminate recom-
bination (several nanoseconds) and (b) second-order homogeneous
recombination (103–104 ns).3 Physically, the first case corresponds
to the recombination of original pairs, whereas the second case
describes the diffusion of reactants belonging to members of dif-
ferent pairs and their subsequent recombination. Previously, it
was argued that “. . .the results given for the times less than 1 ps
must be considered as having mathematical meaning only.”26 How-
ever, considerable progress in experimental methods leads to the
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possibility of measurements within the range from 10−4 ns and
even less. Readers interested in experimental aspects of the problem
at issue are encouraged to refer to the recent review of Kumpu-
lainen et al.27 This renews the interest in the theoretical investi-
gations of the inertial dynamic effects in various applications of
diffusion-influenced processes (see, e.g., Refs. 28–32).

We obtain formally exact expressions for the kinetics of both
bulk and geminate recombination. The rate expressions reveal the
role of inertial dynamic effects at short times. The time-dependent
rate expression for the bulk recombination reactions obtained in
the present theory agree with the rate expression of Harris16 that
was obtained from an approximate solution of the FPKKE, when
the equilibrium rate constant is set equal to that expected from the
kinetic theory of dilute gases. On the other hand, when the reactivity
at contact distance becomes infinity, our rate expression agrees with
that obtained by Rice [Eq. (289) of Ref. 3]. To the knowledge of the
authors, the inertial effect on the geminate recombination reaction is
first investigated in the present work based on the diffusive Cattaneo
system approach.

II. THEORY

We first consider the irreversible bimolecular reaction,
A + B→ product(s), between reactantsA andB in the bath of solvent
molecules for the low reactant concentration limit. We assume that
the reactants are spherical and interact via a centrosymmetric poten-
tial U(r) in the units of kBT; kB and T are the Boltzmann constant
and the absolute temperature, respectively. For the sake of simplicity,
we will neglect the hydrodynamic interaction between the reactants.
Thus, the problem under consideration may be reduced to study
spherically symmetric diffusion toward a test sphere with the reac-
tion radius σ. Therefore, it is expedient to use here an appropriate
spherical coordinate system.

The time-dependent bimolecular rate coefficient k f (t) is given
by5,33,34

k f (t) ≙ ∫ drS(r)ρ(r, t). (2.1)

Here, S(r) is the reaction sink function, which was first introduced
by Wilemski and Fixman35 to account for the effect of reaction on
the time-evolution equations of the reactant concentration fields.
ρ(r, t) denotes the nonequilibrium pair correlation function.5,33 We
assume that the reaction occurs at a contact distance σ, and thus, the
effect of the reaction is modeled by the δ-function reaction sink term

S(r) ≙ κδ(r − σ)
4πσ2

, (2.2)

where κ is an intrinsic rate constant. When the δ-function reaction
sink term is used, it is implicitly assumed that the infinitely stiff
potential wall is located at σ − ε with vanishingly small ε. Hence, the
reactants can approach the reaction surface at r ≙ σ. We then have

k f (t) ≙ κρ(σ, t). (2.3)

Together with the non-penetrating boundary condition at the
reaction surface r ≙ σ and the condition at infinity,

Jr(r ≙ σ, t) ≙ 0 and lim
r→∞

ρ(r, t) ≙ lim
r→∞

g(r) ≙ 1, (2.4)

the reaction model using the δ-function reaction sink in Eq. (2.2)
can be shown to be equivalent to using the following radiation or
partially reflecting boundary conditions:3,35

− 4πσ2Jr(r ≙ σ, t) ≙ κρ(σ, t). (2.5)

Particularly, if κ ≙ 0, Eq. (2.5) describes the case when no reac-
tion occurs. On the other hand, the κ→∞ limit corresponds to
the perfectly absorbing case, and then, (2.5) is called the Smolu-
chowski boundary condition. We emphasize here that any three-
dimensional domain is termed a partially bounded domain if some
point of its boundary belongs to infinity. Hence, consequently, e.g.,
an annual domain {σ < r < R0} turns into the partially bounded
domain {σ < r} as R0 →∞. In this way, for any function given
on the domain {σ < r} condition at infinity will be treated as a
boundary condition.

To include the inertial dynamic effect, we employ the linear dif-
fusive Cattaneo system.21–25 To include the effects of the reaction,
the equation of continuity for ρ(r, t) is modified as

∂ρ(r, t)
∂t

≙ −
1

r2
∂

∂r
∥r2Jr(r, t)∥ − κδ(r − σ)

4πσ2
ρ(r, t). (2.6)

The equation for the radial flux Jr(r, t) is given by the so-called
constitutive relation18,21–25

Jr(r, t) + τD ∂

∂t
Jr(r, t) ≙ −D[ ∂

∂r
ρ(r, t) + ∂U(r)

∂r
ρ(r, t)], (2.7)

where τD is the velocity relaxation time, and the relative translational
diffusion coefficient D is assumed to be a constant. The second term
on the left-hand side of Eq. (2.7),τD∂Jr/∂t, is called the diffusion-
flux relaxation term,23 which takes account of the relaxation to the
local equilibrium of the diffusion flux. The significance of includ-
ing this term was discussed in detail, for instance, in Ref. 25. When
τD ≙ 0, Cattaneo diffusive flux law (2.7) reduces to the classical Fick’s
first law. It must be noted that the constitutive relation (2.7) may
involve a coupling term due to the reaction in general. For example,
if the full reaction model involves some degrees of freedom other
than the positions of reactants, the elimination of these variables
leaves a reaction coupling term in the time evolution equation of
the reactant probability distribution function in the position space;
see Appendix A of Ref. 34. In the present work, we neglect such
complications for the sake of simplicity.

For the relative diffusion of the reactant pair, it is given by
τD ≙ μ/ξr with μ and ξr denoting the reduced mass and the reduced
friction coefficient, respectively; that is

μ ≙
mAmB

mA +mB
and ξr ≙

ξAξB
ξA + ξB

, (2.8)

wheremα and ξα are themass and the friction coefficient of molecule
α, respectively. Hence, the diffusion-flux relaxation term can also be
regarded diffusion inertia, responsible for the inertial effects.

The system of continuity Eq. (2.6) and constitutive relation
(2.7) can be called the diffusive linear Cattaneo system. By the known
Kac’s trick,

(ρ, Jr)→ (ρ,∂ρ/∂t), (2.9)
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the Cattaneo system may be reduced to the following hyperbolic
diffusion equation:

τD
∂
2ρ(r, t)
∂t2

+

∂ρ(r, t)
∂t

≙ D
1

r2
∂

∂r
{r2[ ∂

∂r
ρ(r, t) + ∂U(r)

∂r
ρ(r, t)]}

− κ
δ(r − σ)
4πσ2

[ρ(r, t) + τD ∂ρ(r, t)
∂t

]. (2.10)
We emphasize that by performing transition (2.9), some informa-
tion may be lost (see discussion in Ref. 22). Therefore, it is preferable
to use the Cattaneo system (2.6) and (2.7) rather than Eq. (2.10).

We assume that before the reaction is initiated at t ≙ 0, the reac-
tants are distributed in equilibrium. Then, the initial conditions for
ρ(r, t) and Jr(r, t) are given by

ρ(r, t ≙ 0) ≙ g(r) ≙ e−U(r), (2.11)

Jr(r, t ≙ 0) ≙ 0. (2.12)

With these initial conditions, Laplace transformations of Eqs. (2.6)
and (2.7) give

sρ̂(r, s) − g(r) ≙ − 1

r2
∂

∂r
∥r2 Ĵr(r, s)∥ − κδ(r − σ)

4πσ2
ρ̂(r, s), (2.13)

Ĵr(r, s) + τDsĴr(r, s) ≙ −De−U(r) ∂
∂r

e
U(r)ρ̂(r, s). (2.14)

Hereafter, we denote the Laplace transformation of a function f (r, t)
as L{ f (r, t)} ≙ f̂ (r, s). Then, by solving Eq. (2.14) for Ĵr(r, s) and
substituting the resulting expression into Eq. (2.13), we obtain

sρ̂(r, s) − g(r) ≙ Ds
1

r2
∂

∂r
r
2
e
−U(r) ∂

∂r
e
U(r)ρ̂(r, s)

− κ
δ(r − σ)
4πσ2

ρ̂(r, s). (2.15)

Here, we introduced the effective diffusion coefficient Ds, which
depends on the Laplace transform variable s as follows:

Ds ≡ D/(1 + τDs). (2.16)

We note that with definition (2.16), the above Laplace-transformed
equation for ρ̂(r, s) formally has exactly the same form as the usual
reaction-diffusion equation without the inertial dynamic effect taken
into account.

Therefore, we can express the reaction kinetic expressions in
terms of the Green’s function Ĝ(r, s∣r0 ) that satisfies the equation3,5

sĜI(r, s∣r0 ) − δ(r − r0)
4πr20

≙ LI(r)ĜI(r, s∣r0 ), (2.17)

where

LI(r) ≡ Ds

r2
∂

∂r
r
2
e
−U(r) ∂

∂r
e
U(r)

. (2.18)

In these equations, the subscript “I” denotes that these quantities
take into account the inertial dynamic effects through Ds defined by
Eq. (2.16). The boundary conditions associated with Eq. (2.17) are

∂

∂r
e
U(r)

ĜI(r, s∣r0 )∣
r=σ
≙ 0 and lim

r→∞
ĜI(r, s∣r0 ) ≙ 0. (2.19)

The inner boundary condition at the contact distance σ corresponds
to the reflecting boundary condition in Eq. (2.4). Some accurate
expressions of ĜI(r, s∣r0 ) for arbitrary interaction potentials U(r)
were given in Refs. 5, 36, and 37.

In terms of the Green’s function, the formal expression for
ρ̂(r, s) is given as

ρ̂(r, s) ≙ 1

s
g(r) − κĜI(r, s∣σ )ρ̂(σ, s). (2.20)

In deriving Eq. (2.20), we have noted that LI(r)g(r) ≙ 0. We thus
obtain

ρ̂(σ, s) ≙ 1

s

g(σ)
1 + κĜI(σ, s∣σ ) . (2.21)

Finally, from Eqs. (2.3) and (2.21), we obtain the Laplace transform
of the bimolecular rate coefficient in the low reactant concentration
limit:5

k̂ f (s) ≙ 1

s

κg(σ)
1 + κĜI(σ, s∣σ ) . (2.22)

Explicit expressions for the rate coefficient will be presented in
Sec. III.

We then consider the geminate recombination reaction occur-
ring in the low reactant concentration limit. We assume that the
initial separation between the geminate reactants is r0. The proba-
bility density P(r, t∣r0) that the pair of geminate reactants has not
reacted by time t and at the separation r satisfies the following
equation:

∂

∂t
P(r, t∣r0 ) ≙ − 1

r2
∂

∂r
∥r2Jg(r, t∣r0 )∥ − κδ(r − σ)

4πσ2
P(r, t∣r0 ). (2.23)

The relative flux Jg(r, t∣r0 ) of the geminate pair in the radial

direction satisfies the following constitutive relation:18,21–25

Jg(r, t∣r0 ) + τD ∂

∂t
Jg(r, t∣r0 ) ≙ −De−U(r) ∂

∂r
e
U(r)

P(r, t∣r0 ). (2.24)

Because the geminate recombination reaction starts at t ≙ 0, the
initial conditions are given by

P(r, t ≙ 0∣r0) ≙ δ(r − r0)
4πr20

and Jg(r, t ≙ 0∣r0 ) ≙ 0. (2.25)

The boundary conditions are

Jg(σ, t∣r0 ) ≙ 0 and lim
r→∞

P(r, t∣r0 ) ≙ 0. (2.26)

The survival probabilityW(r0, t) that the geminate pair has not
reacted until time t is

W(r0, t) ≙ ∫ drP(r, t∣r0 ). (2.27)
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Integrating Eq. (2.23) over the whole space of r with the boundary
conditions in Eq. (2.26), we obtain

∂

∂t
W(r0, t) ≙ −κP(σ, t∣r0 ) ≡ −R(r0, t), (2.28)

where R(r0, t) denotes the time-dependent geminate recombination
rate.

With the initial conditions in Eq. (2.25), Laplace transforma-
tions of Eqs. (2.23) and (2.24) give

sP̂(r, s∣r0 ) − δ(r − r0)
4πr20

≙ −
1

r2
∂

∂r
∥r2 Ĵg(r, s∣r0 )∥

− κ
δ(r − σ)
4πσ2

P̂(r, s∣r0 ), (2.29)

Ĵg(r, s∣r0 ) + τDsĴg(r, s∣r0 ) ≙ −De−U(r) ∂
∂r

e
U(r)

P̂(r, s∣r0 ). (2.30)

Solving Eq. (2.30) for Ĵg(r, s∣r0 ) and substituting the resulting
expression into Eq. (2.28), we obtain

sP̂(r, s∣r0 ) − δ(r − r0)
4πr20

≙ LI(r)P̂(r, s∣r0 ) − κδ(r − σ)
4πσ2

P̂(r, s∣r0 ),
(2.31)

where the operator LI(r) is defined by Eq. (2.18).
In terms of the Green’s function defined by Eq. (2.17), the

formal expression for P̂(r, s∣r0 ) is given by

P̂(r, s∣r0 ) ≙ ĜI(r, s∣r0 ) − κĜI(r, s∣σ )P̂(σ, s∣r0 ), (2.32)

with

P̂(σ, s∣r0 ) ≙ ĜI(σ, s∣r0 )
1 + κĜI(σ, s∣σ ) . (2.33)

From Eqs. (2.28) and (2.33), the Laplace transform expressions for
the geminate recombination rate and the survival probability are
then given, respectively, by

R̂(r0, s) ≙ κĜI(σ, s∣r0 )
1 + κĜI(σ, s∣σ ) , (2.34)

Ŵ(r0, s) ≙ s−1∥1 − R̂(r0, s)∥. (2.35)

Explicit expressions for these quantities will be presented in Sec. III.

It is worth noting that Eqs. (2.22), (2.34), and (2.35) for k̂ f (s),
R̂(r0, s), and Ŵ(r0, s), respectively, satisfy the general relations
between the bulk and geminate recombination rates given by5

k f (t) ≙ ∫ dr0R(r0, t)g(r0) ≙ κg(σ)W(σ, t). (2.36)

This relation was first obtained by Tachiya.38

III. RESULTS AND DISCUSSION

In this paper, we now restrict the discussion to the reaction
between interaction-free hard spherical reactants. When U(r) ≙ 0
for r ≥ σ, the Green’s function is given by5,39

Ĝ
0
I (r, s∣r0 ) ≙ 1

8πDsζrr0
[e−ζ∣r−r0 ∣ + ζσ − 1

ζσ + 1
e
−ζ(r+r0−2σ)], (3.1)

where the superscript “0” to the Green’s function denotes an
expression in this special case, and

ζ ≙ (s/Ds)1/2 ≙ ∥s(1 + τDs)/D∥1/2. (3.2)

To get the explicit expressions for k̂ f (s) and Ŵ(r0, s), we just need
simpler expressions:

Ĝ
0
I (σ, s∣σ ) ≙ 1

4πDsσ

1

1 + ζσ
(3.3)

and

Ĝ
0
I (σ, s∣r0 ) ≙ 1

4πDsr0

e−ζ(r0−σ)

1 + ζσ
. (3.4)

Using the expression of the Ĝ0
I (σ, s∣σ ) in Eq. (3.3), Eq. (2.22)

gives the Laplace transform of the bimolecular rate coefficient as

k̂ f (s)
kD

≙
κ

kD

1

s

1 + ζσ

1 + ζσ + (κ/kD)(1 + τDs) , (3.5)

where kD is the steady-state diffusion-controlled rate constant given
by

kD ≙ 4πDσ. (3.6)

When the reaction probability is unity on the collision of the reactant
pair, it can be shown that the bimolecular rate coefficient in the low-
density limit is given by9,10,18,40,41

κkin ≙ πσ
2(8kBT

πμ
)1/2 ≙ σ2(8πD

τD
)1/2, (3.7)

where the subscript “kin” denotes a result of the kinetic theory of
gases. When the value of κ is set equal to 2κkin, Eq. (3.5) coincides
with the rate expressions of Harris16 and Ibuki and Ueno42 that were
obtained from approximate solutions of the FPKKE; see also Eq.
(4.3) of Ref. 18. As noted in Ref. 42, Eq. (15) of Ref. 16 must be
multiplied by 1/s to get the correct result.

When κ goes to infinity, Eq. (3.5) gives the same result as
that obtained by Rice [Eq. (289) of Ref. 3], who solved the hyper-
bolic diffusion equation with the Smoluchowski absorbing boundary
condition:

k f (t)
kD

≙ (1 − e−t/τD) + ( tD
τD
)1/2e−t/(2τD)I0( t

2τD
), (3.8)

where tD ≙ σ
2/D, and I0(z) is the modified Bessel function of the

first kind. Note in passing that Rice did not give any derivation of
Formula (3.8), referring only to his unpublished result. We empha-
size that this Formula (3.8) differs from the similar result given in

Ref. 21 by term (tD/τD)1/2e−t/τD , which rapidly vanishes in course of
time for t > τD.

We see that k f (t) coincides with the Smoluchowski rate expres-
sion at long times. On the other hand, the value of the rate coefficient
k f (t) at t ≙ 0+ is given by

k f (t ≙ 0+) ≙ lim
s→∞

sk̂ f (s) ≙ κ[1 + (κ/kD)(τD/tD)1/2]−1. (3.9)
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We note that the value drops immediately from k f (0) ≙ κ. This sud-
den drop is due to the quick depletion of reactants in contact and
manifests the inertial dynamic effect that retards the inward dif-
fusive flux. In the particular case of κ→∞, Eq. (3.9) reduces to

k f (t ≙ 0+) ≙ 4πσ2cD where cD[≙ (D/τD)1/2] is the speed of the dif-

fusive wave.21 Taking account of Eq. (3.7), one can also recast this

formula as k f (t ≙ 0+) ≙√2πκkin. This corresponds to the so-called
ballistic regime of the reaction kinetics occurring for time values
0 < t ≪ τD.43 It is significant that a similar formula for k f (t ≙ 0+)
was derived by Berezhkovskii et al.7 with the help of a path-integral
approach, without using solution to the FPKKE. Note that to com-
pare our result with that obtained there, one should keep in mind
that the particle mass is taken to be unity in Ref. 7.

In the case of finite κ, we do not have an explicit expression for
k f (t). However, when τD ≙ 0, the inverse Laplace transformation of
Eq. (3.5) gives the well-known Collins–Kimball–Smoluchowski rate
coefficient that will be denoted by k0f (t):3

k0f (t)
kD

≙
κ/kD

1 + κ/kD {1 + κ

kD
Ω[√Dt

σ
(1 + κ

kD
)]}. (3.10)

Here, Ω(z) ≙ exp(z2)erfc(z), which reduces to 1/(π1/2z) for large
z. Therefore, the ratio k f (t)/k0f (t) represents the inertial dynamic
effects on the time-dependent bimolecular rate coefficient.

For the case with infinite κ, which corresponds to the
Smoluchowski absorbing boundary condition, the time-dependent
bimolecular rate coefficient k f (t) is given by Eq. (3.8). Figure 1 dis-

plays the calculated results of the ratio k f (t)/k0f (t) for the three
values of τD. The two values of τD, 0.004 and 0.028 in units of tD, cor-
respond to the parameters used in a paper by Rice et al.,26 who inves-
tigated the reaction rates of ions, based on the Debye–Smoluchowski
equation. The third value 0.1 is an arbitrarily chosen one to examine
the case involving more pronounced inertial dynamic effects.

For the case with infinite κ, k0f (t) diverges as t → 0+, which is a
rather unphysical result. On the other hand, for the case with finite
values of τD, we have a finite value of k f (t ≙ 0+) as given by Eq. (3.9).
Figure 1 shows that the inertial dynamic effects are pronounced at
very short times that are comparable with τD.

Figure 2 displays the inertial dynamic effects on the time-
dependent bimolecular rate coefficient when κ is given by the
collision-limited rate constant in low-pressure gases, κkin in Eq. (3.7).
We calculate k f (t) by the numerical inverse Laplace transformation
of Eq. (3.5) by using the Stehfest algorithm.44 We observe a simi-
lar trend as in the case of Fig. 1, but the magnitude of the inertial
dynamic effects is considerably diminished. Another difference is
that k f (t) approaches k0f (t) almost monotonically.

Using the expressions for the Green’s function in Eqs. (3.3) and
(3.4), the Laplace transform of the geminate recombination rate can
be obtained from Eq. (2.34) as

R̂(r0, s) ≙ σ

r0

(κ/kD)(1 + τDs)
1 + ζσ + (κ/kD)(1 + τDs) e−ζ(r0−σ), (3.11)

where ζ and kD were defined by Eqs. (3.2) and (3.6), respectively.
The usual experimental observable is the survival probability of the
geminate reactant pair, which is given by Eqs. (2.35) and (3.11).

FIG. 1. Inertial dynamic effects on the time-dependent bimolecular rate coefficient
k f(t) for the case with infinite κ. k

0
f
(t) denotes the Smoluchowski result given

by Eq. (3.10), which neglects the inertial dynamic effect. The values of τD in the
legend are given in units of tD(= σ

2/D).

FIG. 2. Inertial dynamic effects on the time-dependent bimolecular rate coefficient
k f(t) when κ = κkin; see Eq. (3.7). k

0
f
(t) denotes the Smoluchowski result given

by Eq. (3.10), which neglects the inertial dynamic effect. The values of τD in the
legend are given in the units of tD(= σ

2/D).

When κ goes to infinity, Eq. (3.11) reduces to

R̂(r0, s) ≙ σ

r0
e
−ζ(r0−σ). (3.12)
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From Eqs. (2.35) and (3.12), the time-dependent survival probability
is given by45

W(r0, t) ≙ 1 −Θ(t − χ) σ
r0

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
exp(− r0 − σ

2
√
DτD
)

+

r0 − σ

2
√
DτD
∫

t

χ
dτ exp(− τ

2τD
) I1(
√

τ2 − χ2/(2τD))√
τ2 − χ2

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
.

(3.13)

Here, Θ(z) and I1(z) are the Heaviside step function and the mod-
ified Bessel function of the first kind, respectively. χ is an important
kinetic parameter defined by

χ ≙ (τD/D)1/2(r0 − σ) ≙ (r0 − σ)/cD. (3.14)

It measures the time required for the geminate pair to approach the
contact distance σ starting from the initial distance r0 and depends
significantly on the velocity relaxation time τD. In other words, χ
is the time for passing the distance r0 − σ by the diffusive wave. This
time is zero when τD ≙ 0. This reflects a known paradox that the clas-
sical diffusion equation predicts an infinite propagation velocity of a
diffusive perturbation.46

When τD ≙ 0, from Eqs. (2.35) and (3.12), the time-dependent
survival probability is given by3

W(r0, t) ≙ 1 − σ

r0
erfc( r0 − σ

2
√
Dt
). (3.15)

Figure 3 displays the results calculated from Eqs. (3.13) and (3.15)
for the three values of τD, 0, 0.028, and 0.1 in units of tD. The ini-
tial distance r0 between the geminate reactants is set to 2σ. From
Eqs. (3.13) and (3.14), we see that the survival probability starts to
decay when t > χ. When τD ≙ 0, the geminate recombination starts
too early, considering the physical time required for the reactants to
arrive at the contact distance starting from the initial distance r0. The
inertial dynamic effects are manifested distinctively at short times.
However, for t > tD, the inertial dynamic effects die out rapidly.

In the case with finite values of κ and τD, we do not have
an explicit time-domain expression for the survival probability.
When τD ≙ 0, the inverse Laplace transformation of Eq. (2.35) with
Eq. (3.11) gives the following expression:3,45

W(r0, t) ≙ 1 − σ

r0

κ/kD
1 + κ/kD {erfc[ r0 − σ

2(Dt)1/2 ]
− exp [−(r0 − σ)2

4Dt
]Ω[ r0 − σ

2(Dt)1/2 + (1 + κ

kD
)(Dt)1/2

σ
]},

(3.16)

where Ω(z) ≙ exp(z2)erfc(z). At large s values, Eq. (3.11) behaves
as

R̂(r0, s) ≅ σ

r0

κ/kD(DτD)−1/2σ + (κ/kD) e−ζ(r0−σ). (3.17)

Comparing Eq. (3.17) with Eq. (3.12), we expect thatW(r0, t) drops
abruptly at t ≅ χ also in the case with finite values of κ and τD.

FIG. 3. Inertial dynamic effects on the time-dependent survival probability W(r0, t)
for the case with infinite κ. The initial distance r0 between the geminate reactants
is set to 2σ. The values of τD in the legend are given in units of tD(= σ

2/D).

Because most numerical methods of inverse Laplace transforma-
tion do not produce the step function behavior faithfully, we take
the approximation that W(r0, t ≤ χ) ≙ 1. For t > χ, the numerical
inverse Laplace transformation works beautifully.

Figure 4 displays the time dependence ofW(r0, t) for the cases
with finite κ. The value of κkin in Eq. (3.7) depends on the value of
τD. If we take σ and tD(≙ σ2/D) as the units of length and time,
respectively, then κkin/kD is 2.38 for τD ≙ 0.028 and 1.26 for τD ≙ 0.1.
We thus set the value of κ/kD to 2. The initial distance r0 between

FIG. 4. Inertial dynamic effects on the time-dependent survival probability W(r0, t)
when κ = 2kD. The initial distance r0 between the geminate reactants is set to 2σ.
The values of τD in the legend are given in units of tD(= σ

2/D).
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the geminate reactants is set to 2σ. W(r0, t) for τD ≙ 0 was calcu-
lated from Eq. (3.16), whereas those for τD ≙ 0.028 and 0.1 were
calculated by numerical inverse Laplace transformation by using
the Stehfest algorithm with the approximationW(r0, t ≤ χ) ≙ 1. The
inertial dynamic effect on the survival probability is qualitatively
similar to the cases with infinite κ.

We see that in Figs. 3 and 4, the survival probability at τD >
0 has a discontinuity of the first kind. This behavior is similar to
that was revealed and reported previously for both heat and diffusion
transfer in media with finite times of relaxation τD (see, e.g., Refs. 47
and 48).

When r0 ≙ σ, the inertial dynamic effects on the survival prob-
ability can be easily envisaged from the relation (2.36) and Figs. 1
and 2.

IV. CONCLUDING REMARKS

In this work, we have investigated the inertial dynamic effects
on the kinetics of diffusion-influenced reactions. Both bulk and
geminate recombination rates are considered in the low reactant
concentration limit. When the interaction potential between the
reactants can be neglected, we presented exact expressions for the
Laplace transforms of the bimolecular rate coefficient [Eq. (3.5)] and
the geminate reaction rates [Eq. (3.11)]. When the intrinsic reaction
rate constant κ goes to infinity, explicit time-domain expressions
were also presented; the time-dependent bimolecular rate coefficient
in Eq. (3.8) and the time-dependent survival probability of the gem-
inate reactant pair in Eq. (3.13). The bimolecular rate coefficient
expression in Eq. (3.8) coincides with that obtained by Rice with-
out derivation [Eq. (289) of Ref. 3], whereas the survival probability
expression in Eq. (3.13) has been first obtained in this work. The
Laplace transform expressions for the bimolecular rate coefficient
[Eq. (3.5)] and the geminate reaction rates [Eq. (3.11)] have also been
obtained for the first time in the present work.

It is of interest that when the value of intrinsic reaction rate
constant κ is set equal to twice the kinetic rate constant κkin of
dilute gases [Eq. (3.7)], the Laplace transform expression for the
bimolecular rate coefficient in Eq. (3.5) coincides with that obtained
by Harris16 and Ibuki and Ueno40 from approximate solutions
of the Fokker–Planck–Klein–Kramers equation and independently
derived with the aid of a path-integral approach by Berezhkovskii
et al.7

Because of the inertial dynamic effects, both the rates of bulk
and geminate recombination are retarded appreciably at short times.
An interesting finding in regard to the geminate recombination rate
is that in the presence of an inertial effect, the geminate reaction
can occur only after time elapsed by χ as defined by Eq. (3.14).
When the inertial dynamic effect is neglected, even for the case
with r0 > σ, the geminate recombination may occur immediately
after the reaction is initiated, although the rate may be very small
at early times. This reflects a known paradox that the classical diffu-
sion equation predicts an infinite propagation velocity of a diffusive
perturbation.44
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