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The fractional differentiation method’s broad possibilities are demonstrated with rather simple but important

examples of the anomalous diffusion trapping problems. In particular we evaluate the reaction rate coefficients

for the subdiffusion-controlled reactions and for reactions describing by a diffusion equation with a half-order

time derivative as a damping term. The distinctive feature of this aproach is that the reaction rate coefficient

may be obtained by means of some factorization procedure immediately, without a preliminary solution to the

corresponding initial boundary value diffusion problem. The explanations given in the paper are detailed enough

to provide the mathematical background for the fractional differentiation method needed to apply it to a wide

range of reaction-diffusion problems with time-fractional derivatives in the Riemann-Liouville sense.
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I. INTRODUCTION

Diffusion processes with reactions are finding ever-

widening applications in biology, chemistry, neuroscience,

and physics including optics and astrophysics to name just a

few. Among them of particular importance are subdiffusion-

controlled reactions, which are attracting increasing attention

in recent decades. Often the reaction-subdiffusion systems are

modeled within the continuous-time random walk approach

and its modifications. On the other hand, the alternative the-

oretical approach which we are going to treat here may be

formulated in terms of initial boundary value problems for

equations with fractional derivatives [1]. This is a significant

point since the calculus of fractional order derivatives has

gained impressive developments. From the very beginning we

would like to stress that it is not our intention here to enter into

even a brief survey of multiple and rather complex physical

aspects of this problem. Readers can find good insights into

this vast subject in Refs. [1–13] and in other works cited

below.

Specifically speaking, we focus our treatment on the appli-

cation of the fractional differentiation method (or Babenko’s

symbolic calculus method) [14–17] to study the theory of

diffusion (subdiffusion)-controlled reactions.

As far as we know, the basic idea of application of a half

order time derivative to find a boundary gradient for the classi-

cal parabolic initial boundary value problems of mathematical

physics was conceived first by Courant and Hilbert [18].

Next, in 1969 Oldham proposed to use a fractional deriva-

tive of order 1/2 (called the “semidifferentiation operator”) to

solve some electrochemical problems involving diffusion in

the semi-infinite space [19]. This approach was significantly

developed for the cases of diffusion in media with cylindrical

and spherical geometry by Oldham and Spanier [20,21]. It
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has been shown there that the original initial boundary value

diffusion problem may be reduced to a single equation which

involves only a first-order spatial derivative and a half-order

time-fractional derivative.

We highly emphasize that the above attempts to use a

half-order time-fractional derivative to solve some problems

of heat and normal diffusion transfer may be treated only as

a germ of the idea for the method under consideration. In a

proper sense the fractional differentiation method (FDM) for

heat transfer problems (counterparts to the diffusion ones) was

originally suggested later by Babenko [14]. In 1996 Babenko

published a landmark book Heat and Mass Transfer: Calcu-

lating of Heat and Diffusion Fluxes [15], where he described

the general concept of the FDM and also gave a number of

examples of its implementation in the heat and mass transfer

theories. Subsequently, further development of the FDM was

presented in his other considerably revised and enlarged book

[16]. It is appropriate to note that the above books are available

only in Russian, and apparently, therefore, the FDM has not

received due attention worldwide. We underline, however, that

Sec. 6.3 of the book by Podlubny describes briefly the FDM

and a few its applications [17]. In this paper we detail enough

to provide the necessary mathematical background for the

FDM.

An additional point to emphasize is that applicability of the

FDM is much wider than the known classical Laplace trans-

form method. Problems for partial differential equations in-

cluding time-fractional derivatives and integral equations may

be effectively tackled even when coefficients depend on both

spatial and temporal variables. Moreover, some problems of

nonlinear differential equations are amenable to theoretical

treatment by the FDM.

The FDM proved to be useful to solve integral equations

[22] and even for pure mathematical problems concerning the

existence and uniqueness of solutions for the time-fractional

nonlinear partial integro-differential equation with Caputo

derivatives (see, e.g., Ref. [23] and references therein). Here
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it is expedient to cite the recent paper by Li and Beaudin:

“Babenko’s approach is a very useful method in solving dif-

ferential and integral equations by treating integral operators

as variables and derives convergent infinite series as solutions

in spaces under consideration” [24].

Thus, it turned out that Babenko’s approach is an ef-

ficient tool used to solve analytically partial differential

equations (including time-fractional differential equations)

with initial conditions or initial boundary value problems

describing diffusion. Moreover, note that the FDM allows us

to find desired boundary gradients of the local concentration

immediately in a rather simple and elegant manner. Never-

theless, it has been known that application of the FDM in a

general case leads to some functional series which are valid

mostly at small time values [15,16]. However, it is significant

that even within the scope of the FDM there are several

ways to extend the covergence of these series to the case

of large times [16]. In particular, to obtain long-time expan-

sions, Babenko proposed to seek the boundary gradient as a

series in positive powers of the fractional-order derivatives

(see also Sec. IX below). A number of mathematical aspects

concerning substantiations for the method were presented in

Ref. [16]. However, the comprehensive investigation of con-

vergence conditions for the FDM series is a quite difficult

task, and final results have not yet been obtained. So here we

focus our attention mainly on the FDM application algorithm

(see details in Sec. VI), putting aside fairly subtle questions

on its mathematical justifications.

The present paper stems from our previous works de-

voted to different applications of the FDM to the theory of

trapping reactions in which reactants undergo normal diffu-

sion [25–29]. Note in passing that in those works on the

FDM we used term the method of fractional-order differen-

tial operators, and, moreover, it is also known as Babenko’s

symbolic calculus method [17]. However, we think that the

term “fractional differentiation method” originally proposed

by Babenko should be put to better use.

We proved that for the general one-dimensional normal

diffusion problem with coefficients depending only on spatial

variables the use of the FDM is equvalent to application of

the known Wentzel-Kramers-Brillouin method performed in

the Laplace transform space with respect to time [25]. The

use of singular perturbations theory allowed us to sum up

the leading terms of the relevant asymptotic functional series

obtained by means of the FDM for the rate coefficient of the

normal diffusion-controlled reactions with Coulomb interac-

tion potential [26,27]. This procedure helped us to go beyond

the short-time restriction imposed by the direct utilization of

the standard FDM algolothm. Taking advantage of the FDM

we manage to establish the exact connection between the

rate coefficient in the case of the perfect absorption and the

corresponding rate for the partially reflecting condition in a

very simple fashion [28]. With the aid of the FDM we also

investigated mobility effects of the phase transition bound-

ary on capture of aerosol particles by a droplet [25]. It is

worth also noting that in one specific case of a series with

respect to fractional derivatives their radius of convergence

has been establised [29]. Finally, in the recent Ref. [30] we

considered different aspects of the FDM applications to study

kinetics of reactions for both Fickian and non-Fickian normal

diffusion of reactants within the scope of Smoluchowski’s

trapping model. In particular the known Rice formula for the

hyperbolic rate coefficient was derived there by means of the

FDM.

We conclude this survey noting that the operator factor-

ization is not new in physics and can be traced back to

Dirac, who, to our knowledge, pioneered the application of

the square root of the wave operator to derive his relativistic

wave equation, which is the first-order in both space and time.

Note also that the operator factorization, being an important

feature of the FDM, is not an exhaustive point (see Sec. VI).

Since this article focuses on the description of a mathe-

matical method we mainly have to deal with mathematical

concepts rather than the physical ones. That is why, for read-

ers’ convenience, the most important mathematical notations,

definitions, and formulas are given (see the Appendix), and,

moreover, all necessary calculations are provided in some

detail.

This paper is structured as follows. The following Sec. II

contains basic physical assumptions on the trapping model for

reactions due to anomalous diffusion. Section III elucidates

the operators factorization idea. In Sec. IV we formulate the

general external initial boundary value problems for the time-

fractional diffusion equations. Discussion of the trapping rate

coefficient is also considered here. Next Sec. V is devoted to a

description of an important case of the subdiffusion problems

with spherical symmetry. In the short Sec. VI we represent the

FDM as an algorithm comprising seven main steps. Applica-

tion of the FDM to the normal diffusion-controlled reactions

is presented in Sec. VII. In Sec. VIII we apply the FDM to

the subdiffusion-controlled reactions and compare obtained

results with the known Wyss solution. In Sec. IX we inves-

tigate in detail an important special case of the problem for

the time-fractional telegraph equation. Finally, we give brief

concluding remarks in Sec. X. We provided some important

mathematical background technical details of the method in

the Appendix.

II. PHYSICAL BACKGROUND

Consider an unconfined, quiescent, homogeneous, and

isotropic inert host medium containing spherical particles A

and B. Hence, we can neglect anisotropy and dependence on

spatial and temporal coordinates of physical quantities inher-

ent in this host medium. We focus here on the irreversible bulk

diffusion-controlled reactions between A and B particles that

occur in the host medium with the elementary reaction scheme

[31]

A + B
k(t )−→ A + P. (1)

We assume that B particles moves toward static A′s by diffu-

sion and, furthermore, that the reaction between reactants A

and B to form a product P is much faster than the diffusion

time. Moreover, let reaction (1) be heterogeneous, i.e., it takes

place at the encounter distance, R = RA + RB, where RA and

RB are radii of particles A and B, respectively. In this way we

can formally treat an immobile particle A as an absorbing sink

of radius R but then B becomes a pointlike particle. According

to the classical Smoluchowski trapping model, the reaction

rate coefficient k(t ) in (1) should be taken as a time-dependent
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positive function k(t ) > 0 for all times t > 0, calculated by

means of a solution to some initial boundary value problem for

a relevant diffusion equation [31]. Here, for simplicity’s sake,

we shall consider the force-free reaction-diffusion processes,

occurring in three-dimensional (3D) host media.

It has been observed that the behavior of the mean-square

displacement for a diffusing B reactant often reveals a power-

like asymptotic law [1,32–34]:

〈r2(t )〉 ∼ Kαtα as t ≫ τD , (2)

where 〈· · · 〉 represents an ensemble average, Kα is a positive

constant, α is some nonnegative number, and τD is the diffu-

sion relaxation time inherent the host medium [35].

The mean-square displacement (2) is the fundamental rela-

tion, which depends on the host medium structure. Provided

0 < α < 1 the diffusion transport of B particles is slower

than the normal diffusion one (α = 1) and known as anoma-

lous subdiffusion. The corresponding number α is called the

anomalous subdiffusion exponent [33,34], and in turn the par-

ticles B and host medium are referred to as the subdiffusive

particles and subdiffusive medium, respectively [32].

Numerous reactions of the type (1) appear to be

subdiffusion-controlled, and for this reason they have at-

tracted the close attention of many researchers (see references

in Sec. IV).

III. THE OPERATOR FACTORIZATION

In general terms the FDM is one in which initial boundary

value problems for the second-order or higher partial differ-

ential equations are reduced to the corresponding systems of

equations of a lower order (see Sec. VI). Without going into

subtle mathematical details, we shall elucidate the key idea of

the operator factorization by means of simple equations with-

out the boundary conditions.

A. The 1D normal wave equation

Consider the 1D wave equation

�cϕ :=
(

∂2
t − c2∂2

x

)

ϕ(x, t ) = 0 x ∈ R , t ∈ R+ , (3)

where �c is the d’Alembert operator with the wave velocity

c > 0. For brevity, henceforth ∂ς stands for the partial deriva-

tive ∂/∂ς with respect to the independent variable ς . Taking

into account that ∂t∂x = ∂x∂t one can carry out factorization

of the d’Alembert operator as follows:

�c = L
−
L

+ , (4)

L
− := (∂t − c∂x ) , L

− := (∂t + c∂x ) . (5)

Thus, the second-order partial differential equation (3) leads

to a system of two equations of the first order:

L
−ϕ+ = 0 , L

+ϕ− = 0 . (6)

It may be proved that ker(L∓) ⊂ ker(�c) and general solution

to the wave equation (3) reads ϕ(x, t ) = ϕ+(x, t ) + ϕ−(x, t ),

where function ϕ+(x, t ) [ϕ−(x, t )] describes a wave moving

to the left (right) at the speed c, respectively.

B. The 1D time-fractional diffusion wave equation

In Ref. [36] Gorenflo and Mainardi considered the funda-

mental solution u(x, t ) of the time-fractional drift equation

C
D

β
t u(x, t ) = −∂xu(x, t ), 0 < β � 1,

u(x, 0+) = δ(x), x ∈ R, t ∈ R+ (7)

with δ(x) the Dirac delta function and CD
β
t the fractional

derivative of order β in the Caputo sense (A3). There they

noted that Eq. (7) is simply related to that of the time-

fractional diffusion wave equation
(

C
D

2β
t − ∂2

x

)

u(x, t ) = 0 , x ∈ R , t ∈ R+ (8)

under initial conditions

u(x, 0+) = δ(x) if 0 < β � 1 , (9)

∂t u(x, 0+) = 0 if 1/2 < β � 1 . (10)

By factorizing Eq. (8) we get [36]
(

C
D

2β
t − ∂2

x

)

u =
(

C
D

β
t − ∂x

)(

C
D

β
t + ∂x

)

u . (11)

Hence one can see that to find the fundamental solution of the

time-fractional drift equation (7) we must treat the solution

of Eq. (8) for the right factor in the representation (11). In

Ref. [36] Eq. (8) has been solved by using the Laplace trans-

form, and then the required fundamental solution was found.

C. The subdiffusion of cosmic rays

The subdiffusion model at α = 1/2 has been widely used

also to solve the problem of the diffusion motion of parti-

cles in a weakly inhomogeneous magnetic field occuring for

cosmic radiation, which has been defined as extraterrestrial

charged particle radiation (see Ref. [37] and the bibliography

therein).

In 1977, studing the cross-field transport of cosmic rays,

Urch concluded that their diffusion differs from the normal

first Fick law by the presence of the third derivative instead of

the first one: jx := −DU ∂3
x u. Hereafter u(x, t ) is the isotropic

distribution for the particles, averaged over all particle mo-

mentum directions, and DU stands for the relevant transport

constant. Then, with the help of the continuity relation, Urch

derived his transport equation
(

∂t − DU ∂4
x

)

u(x, t ) = 0 , x ∈ R , t ∈ R+ . (12)

Webb et al. pointed out that Urch’s solution exhibited the

anomalous subdiffusion property (2) at α = 1/2 [37]. In its

turn they used an alternative model and derived the time-

fractional diffusive equation
(

D
1/2
t −

√
DU ∂2

x

)

u = 0, x ∈ R , t ∈ R+. (13)

To establish connection between Eqs. (12) and (13) Urch’s

Eq. (12) was factorized as follows [37]:
(

∂t − DU ∂4
x

)

u =
(

D
1/2
t −

√
DU ∂2

x

)(

D
1/2
t +

√
DU ∂2

x

)

u .

(14)

Thus, in this section we have demonstrated how the op-

erator factorization is used to find the time-fractional drift

equation (7) and the time-fractional diffusive equation (13).

However, it should be emphasized that although the operator
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factorization is an important component of the FDM we wll

not apply it here to derive any new physical relations to de-

scribe anomalous diffusion phenomena.

IV. STATEMENT OF THE PROBLEM

It is known that memory influence can change the rate

of the particle reaction-diffusion transport, and as this takes

place, the original partial differential equations of normal

diffusion naturally turn into the integro-differential, which

often appear to be some form of time-fractional diffusion

equations [1,38].

Reactions in subdiffusive media and associated frac-

tional diffusion equations have been intensively investigated

[32,33,38–43]. Futher fractional diffusion equations were

generalized to the corresponding fractional Kramers equa-

tion [44] and fractional telegraph equation [45–47]. Therefore,

here we formulate the problems omitting technical details,

which readers can find in the above cited references.

A. General time-fractional telegraph equation

We shall study subdiffusion of a subdiffusive particle B

in terms of the probability of finding it at space-time point

(r, t ), denoting it as ρ(r, t ). For the identical, noninteracting

B particles this function also may be treated as the so-called

complementary normalized local concentration [31], which,

for brevity, we shall call just local concentration. Obviously,

concentration is a real-valued nonnegative function ρ : Q
− →

[0, 1]. Hereafter Q
− = 


− × R+, where we assume that a

given test sink occupies a 3D ball domain 
 called a subd-

iffusive sink [32].

Assume that similar to the normal diffusion case the

subdiffusion may be mathematically descibed by a linear sys-

tem of coupling conservation law and nonlocal (generalized

Cattaneo) constitutive relation given in the 4D augmented

configuration space Q− with respect to ρ(r, t ) and its flux

[39,45–47].

Thus, suppose that the evolution of the desired function

ρ(r, t ) in Q− is governed by the fractional diffusive Cattaneo

system

∂tρ = −∇ · j , (15)

C
(α)
t j = −DαD

1−α
t ∇ρ . (16)

Here and elsewhere we use the simplest generalization of

normal relaxation operator

C
(α)
t := 1 + τα

DD
α
t , (17)

which describes memory (inertial) effects on particles’ B sub-

diffusion (see, e.g., Refs. [35,48,49] and references therein)

and is called the fractional relaxation operator. In addition

vector j(r, t ) is a nonlocal flux of subdiffusive B particles, ∇

stands for the gradient operator, and Dν
t {·} is the Riemann-

Liouville fractional derivative of νth order (see Definition

A.3), and we assume that the subdiffusion exponent α is fixed

such that 0 � 1 − α < 1. The positive constant Dα denotes

the subdiffusion coefficient connected with the constant Kα in

relation (2), and it differs from that of a normal diffusivity

[32], having physical dimension [Dα] = L2T −α . Fractional

time τ α
D ([τ α

D] = T α) is an important parameter of the subdif-

fusive medium [39]. It generalizes the known relaxation time

of the normal diffusive wave damping [35].

By the known Kac’s trick (ρ, j) → (ρ, ∂tρ) the fractional

system (15), (16) may be reduced to so-called time-fractional

telegraph equation (TFTE) [39]
(

τα
DD

2α
t + D

α
t − Dα∇2

)

ρ = 0 in Q− , (18)

where ∇2 is the Laplace operator.

Thus, the constitutive equation (16) suggested by Compte

and Metzler [39] allows us to generalize the subdiffusion

equation (22), taking the relaxation effects into account. Note

in passing that another choice of the fractional constitutive

equation leads naturally to another TFTE [50].

The investigation of the general TFTE (18) when the subd-

iffusion exponent 0 < α � 1 needs some modification of the

FDM we will discuss elsewhere.

B. Special and limiting cases of the time-fractional

telegraph equation

If it does not cause confusion to denote the desired solution

regardless of their physical meaning the same notation will

be used throughout the text. Hence, at α = 1 in Q− we have

normal relaxation operator C
(1)
t = 1 + τD∂t with the normal

telegraph equation and, further, as τD → 0 the normal diffu-

sion equation, respectively,
(

τD∂2
t + ∂t − D1∇2

)

ρ = 0 , (19)

(∂t − D1∇2)ρ = 0 . (20)

Note that reactions of scheme (1) for the subdiffusive regime

including inertial effects was treated in Ref. [51]. From a

mathematical viewpoint Eq. (18) is a time-fractional hyper-

bolic diffusion equation [35].

The magnitude of fractional time τα
D characterizes the

transport of subdiffusive particles and, e.g., as τα
D → 0 con-

stitutive equation (16) yields nothing more than a fractional

generalization of the first Fick law [32,41]

j = −DαD
1−α
t ∇ρ . (21)

In this case the fractional diffusive Cattaneo system (15) and

(16) leads to the time-fractional subdiffusion equation (TFDE)

[32,41]
(

∂t − DαD
1−α
t ∇2

)

ρ = 0 in Q−. (22)

An important point is that the same limit for the model

proposed in Ref. [50] simplifies the fractional constitutive

equation to the normal Fick’s law. Moreover, note that the

convolution term in Eq. (22) (due to the fractional derivative

D
1−α
t ) still retains memory effects on the diffusion.

It is important to bear in mind that to find concentration ρ

for 0 < α � 1/2, the only condition on its initial value should

be imposed, while, for 1/2 < α � 1, we need to pose an initial

condition for ∂tρ as well [52,53]. So, to avoid prescribing that

extra initial condition, we shall treat here the limiting case of

the anomalous subdiffusion exponent α = 1/2 only [54,55].

This case is especially noteworthy since it corresponds the

well-known 3D comb model, describing anomalous diffusion

in numerous comblike structures, particularly in a disordered
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nanostructure [16,55–59]. Therefore, considering the above,

in the sequel (see Sec. IX) we shall study this limiting case

for general TFTE (18), i.e., an equation of the form

(√
τD∂t + D

1/2
t − D1/2∇2

)

ρ = 0 in Q− . (23)

One can see that the TFTE (23) may be physically interpreted

as a diffusion equation subject to a damping effect, repre-

sented by the 1/2-order time derivative [52].

C. Initial and boundary conditions

For both TFDE (22) and TFTE (23) we impose the initial

condition

ρ|t=0+ = 0 in 
− . (24)

It should be stressed that very often time-fractional derivatives

in the Caputo sense are used in the theoretical works on

TFDE [43,54,60]. So the zero initial condition (24) plays an

important role in view of discussions of Eqs. (A2) and (A13).

Let us also impose the Dirichlet condition on the boundary

∂
 of subdiffusive sink

ρ|∂
+ = ρs(t ) in R+ , (25)

where we assume boundary function ρs ∈ L1
loc(R+) such that

0 < ρs(t ) � 1 for all t ∈ R+. It is significant that one should

not require the consistency relation between initial and bound-

ary conditions [61], i.e., stipulate

lim
t→0+

ρs(t ) = lim
r→∂
+

lim
t→0+

ρ(r, t ) (26)

to apply the FDM. For instance, the absorbing boundary con-

dition corresponds to the case when ρs(t ) ≡ 1, and, plainly,

this condition is not consistent in sense of relation (26). The

case of the arbitrary boundary function ρs(t ) will be retained

hereafter since it describes many important physical phenom-

ena, particularly the so-called signaling problem [53,62].

To complete the formulation of the external time-

dependent diffusion problem and then obtain its unique

solution one should prescribe a condition at infinity

ρ(r, t ) → 0 as ‖r‖ → ∞ for all t ∈ R+ . (27)

Condition (27) is called the regularity condition at infinity

(or Fujita condition in the context of the time-fractional equa-

tions [52]).

Throughout the paper, for brevity sake, the external initial

boundary value problems for the TFDE (22) and TFTE (23)

under the initial condition (24) and Dirichlet boundary condi-

tion (25) which satisfy the regularity condition at infinity (27)

we will term Cauchy-Dirichlet problems.

To apply the FDM to the posed Cauchy-Dirichlet prob-

lems, first, they should be reduced to an appropriate form.

D. Canonical Cauchy-Dirichlet problems

Let L(x, t ) be a linear time-fractional operator with vari-

able coefficients

L(x, t ) := D
2ν
t + β(x, t )Dν

t

−α2(x, t )∂2
x − α1(x, t )∂x + α0(x, t ) in R

2
+ . (28)

Here 0 < ν � 1 and coefficients β(x, t ), αi(x, t ) (i = 0, 1, 2)

are smooth real-valued functions in R
2
+; moreover, we sup-

pose that α0(x, t ) � 0, α2(x, t ) > 0.

Definition IV.1. For the operator L(x, t ) (28) acting on

a function u : R
2
+ → (0, 1) we define the external Cauchy-

Dirichlet problem of the canonical form as follows:

L(x, t )u = 0 in R
2
+, (29)

u|t=0+ = 0 , u|x=0+ = us(t ) , u|x→+∞ → 0 , (30)

where us(t ) ∈ L1
loc(R+) such that 0 < us(t ) � 1.

Canonical problems with both classical and time-fractional

operators often arise in diffusion theory. For example, in

Ref. [63] the corresponding initial boundary value problem

(20)–(23) was formulated with respect to the spherically

symmetric survival probability PS (r, t ), but if we introduce

the trapping probability u(r, t ) = 1 − PS (r, t ) that problem is

transformed into a canonical one.

These kinds of problems are important since the FDM is

the most well elaborated for the canonical Cauchy-Dirichlet

problems [15,16]. Therefore, to apply the FDM it is expedi-

ent first to reduce the problem under consideration to some

form of the canonical problem (29), (30). At the same time

we should particularly emphasize that the class of problems

resolved via the FDM is much wider than proper canonical

problems. It includes, e.g., some multidimensional problems,

problems under Neumann and Robin boundary conditions,

nonlinear problems, etc. [15,16].

E. The trapping rate coefficient

The main objective for the reaction kinetics theory is to

calculate the total trapping rate of subdiffusive particles by

the reaction surface ∂
 of a given subdiffusive sink

k(t ) =
∮

∂


ν(rs) · j(rs, t )dS . (31)

Here ν(rs) is the normal unit vector pointing outward of 
−

at its spatial boundary point rs ∈ ∂
. Clearly, the reaction (1)

is pseudo-monomolecular, and the corresponding chemical

kinetics equations along with initial conditions read

dcB(t )

dt
= −k(t )cAcB(t ),

dcA

dt
= 0, t > 0, (32)

cB(t )|t→0+ → c0
B, cA(t ) ≡ cA = const, (33)

where cA and cB(t ) are the bulk concentrations of reactants

A and B. Hence, provided rate coefficient (31) is known, the

decay of reactants B due to subdiffusion-controlled reactions

on the nonevanescent sinks governs the formula [42,64]

cB(t ) = c0
B exp [−cA�(t )] , (34)

�(t ) :=
∫ t

0

k(ς )dς . (35)

Using the definition (A6) at ν = −1 this integral may be

rewitten in the operator form as follows:

�(t ) = D
−1
t k(t ) . (36)

With the help of this representation the FDM allows us to find

function �(t ) directly without evaluation of the field ρ(r, t ).

044145-5



SERGEY D. TRAYTAK PHYSICAL REVIEW E 110, 044145 (2024)

V. SPHERICALLY SYMMETRIC CASE

One can see that if B particles’ subdiffusion has spherical

symmetry, it is expedient to use the spherical coordinates,

attached to the origin O, coinciding with the subdiffusive

sink center. So we are looking for the radial-dependent con-

centration field ρ(r, t ) of the form ρ : Q−
r → (0, 1), where

Q−
r := (r > R) × R+. The spherically symmetric diffusion

problems have a wide variety of applications; therefore, we

consider here subdiffusive trapping problems under spherical

symmetry.

A. Spherically symmetric Cauchy-Dirichlet problems

Spherical symmetry greatly simplifies the problems since

only the radial part of the Laplacian ∇2
r := 2r−1∂r + ∂r

2 is

nonzero. Using this we may rewrite above posed Cauchy-

Dirichlet problems.

(a) For the spherically symmetric case the TFDE (22) and

diffusive flux (21) may be recast as

(

∂t − DαD
1−α
t ∇2

r

)

ρ = 0 in Q−
r , (37)

jr = −DαD
1−α
t ∂rρ . (38)

(b) Similarly the spherically symmetric TFTE (23) and

corresponding fractional constitutive relation (16) are reduced

to

(√
τD∂t + D

1/2
t − D1/2∇2

r

)

ρ = 0 in Q−
r , (39)

Ct jr = −D1/2D
1/2
t ∂rρ . (40)

Here and below we use simplified notation for the relaxation

operator at α = 1/2: Ct := C
(1/2)
t . Both Eqs. (37) and (39)

should be solved under the following Cauchy-Dirichlet con-

ditions:

ρ|t=0+ = 0 , ρ|r=R+ = ρs(t ) . (41)

Note that acting in Eq. (39) from left by operator D
1/2
t we

obtain

(√
τDD

3/2
t + ∂t − D1/2D

1/2
t ∇2

r

)

ρ = 0 .

As τD → 0 we have an equation with a small parameter at

a high-order (3/2) time derivative, and, rigorously speaking,

this asymptotic should be investigated by means of singular

perturbation theory. Formally the Cauchy-Dirichlet problem

for the TFTE (39), (41) turns to the specific case of the

problem (37), (41) at α = 1/2.

Although the FDM is directly applicable to the problems

with spherical symmetry it is more convenient to use it af-

ter elimination of the curvature effects. Therefore, first the

above Cauchy-Dirichlet problems should be transformed to

formally 1D in space problems with respect to an auxiliary

functions u(x(r), t ), taking into account the well-known rela-

tion r∇2
r (r−1u) = ∂r

2u. This may be performed by means of

incomplete Kelvin transformation: 
− → R
3
+ [35] such that

Q−
r → R

2
+. The corresponding field ρ(r, t ) and its gradient

∂rρ(r, t ) read, respectively

ρ(r, t ) =
R

r
u(x, t ) , (42)

∂rρ(r, t ) = −
R

r2
u(x, t ) +

R

r
∂xu(x, t ) ,

(x, t ) ∈ R
2
+ , x := r − R � 0 . (43)

Thus, one formally reduces the posed above Cauchy-Dirichlet

problems to the corresponding 1D canonical ones, with re-

spect to the auxiliary functions u(x, t ) depending on the

spatial variable x and temporal t. This has particular im-

portance in simplifying the spherically symmetric problems

[20,34].

B. Spherically symmetric rate coefficients

Henceforward we always suppose that function is “good

enough” in order that the following property holds true:

lim
r→R+

∂rD
ν
t {ρ(r, t )} = D

ν
t

{

lim
r→R+

∂rρ(r, t )
}

, (44)

where 0 < ν � 1 and t ∈ R+. Note here that property (44)

turns out to be correct for many various diffusion problems

[16]; however, in a general case it must be proved.

For the spherical symmetry general formula the rate coef-

ficient (31) is simplified to

k(t ) = 4πR2 jr (r, t )|r=R+ . (45)

In case (a), taking into account constitutive relation (38), we

arrive at the explicit formula for the boundary flux

jr |r=R+ = −DαD
1−α
t ∂rρ|r=R+ . (46)

Since constitutive relation (40) is an ordinary time-fractional

differential equation with respect to the flux, case (b) becomes

more complicated. Applying the FDM to Eq. (40) similar to

Refs. [16,22] we can plainly obtain the operator expression

jr |r=R+ = −D1/2C
−1
t D

1/2
t ∂rρ|r=R+ , (47)

where C
−1
t is the inverse operator to the relaxation one. For-

mally it may be written in the following fashion:

C
−1
t =

1

1 + √
τDD

1/2
t

. (48)

Specific calculations for the boundary flux (47) depend on the

operator (48) realizations and will be considered in Sec. IX.

Thus, the main objective for the theory of subdiffusion-

controlled physical processes is to calculate the surface

gradient of the auxiliary function ∂xu(x, t )|x=0+ since Eq. (43)

yields the relationship

∂rρ(r, t )|r=R+ = −
1

R
us(t ) + ∂xu(x, t )|x=0+ . (49)

It is obvious that the first term in the right-hand side of

Eq. (49) describes curvature effects due to sphericity of the

subdiffusive sink reaction surface.

VI. OUTLINE OF THE FDM

Before proceeding to specific applications of the FDM to

evaluate the desired reaction rate coefficients corresponding
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to the posed above Cauchy-Dirichlet diffusion problems, we

express this method as an algorithm.

The FDM may be formulated as the algorithm comprising

the following seven main steps:

(1) Reduce the original Cauchy-Dirichlet diffusion prob-

lem to its canonical form.

(2) Factorize the relevant partial (fractional) differential

equation to a system of partial (fractional) differential equa-

tions, containing the space partial (fractional) derivatives of

lower orders.

(3) Extract an equation with a particular solution satisfy-

ing the original initial condition and condition at infinity.

(4) Express the boundary gradient of the desired solution

through the prescribed boundary function.

(5) Represent the reaction rate coefficient as an infinite

(finite) series with respect to fractional derivatives by means

of the given constitutive relation for the flux.

(6) Investigate the convergence of the obtained functional

series for short-time values.

(7) Extend the result to the case of large values of time.

It is important to keep in mind that performing the last

two steps one can face highly difficult mathematical problems,

which is far from its being resolved up to now.

Lastly, we would like to emphasize again that derivation

of any equations to describe subdiffusion processes is not the

purpose of the method under consideration.

VII. NORMAL DIFFUSION-CONTROLLED REACTIONS

Although the main emphasis of the paper is placed on

application of the FDM to problems posed for the TFDE

and TFTE we start our treatment from the normal diffusion

case when α = 1. This allows us to clarify the essence of the

method in a more complicated anomalous subdiffusion case.

A. Auxiliary 1D normal diffusion

In the normal diffusion case the Cauchy-Dirichlet problem

for the TFDE (37), (41), (27) and flux (38) under transform

(42) take the canonical 1D form:
(

∂t − D1∂
2
x

)

u = 0 in R
2
+, (50)

u|t=0+ = 0 , u|x=0+ = us(t ) , u|x→+∞ → 0, (51)

jx(x, t ) = −D1∂xu, (52)

where us(t ) ≡ ρs(t ) and D1 is the common normal diffusion

coefficient.

Factorization of Eq. (50) yields the relation

(

D
1/2
t −

√
D1∂x

)(

D
1/2
t +

√
D1∂x

)

u = 0 . (53)

It is proved that a nontrivial solution to Eq. (50) u(x, t ) satis-

fies the time-fractional partial differential equation [65]

−
√

D1∂xu = D
1/2
t u in R

2
+ . (54)

Moreover it may be shown that solution to Eq. (54) satisfies

initial condition and condition at infinity (51) automatically

[16]. In its turn the use of the boundary condition (51) in

Eq. (54) directly leads to the expression for the auxiliary flux

at the boundary

−D1 ∂xu|x=0+ =
√

D1 lim
x→0+

D
1/2
t u =

√
D1D

1/2
t us(t ) (55)

or with the help of Definition A.3 in the explicit form

−D1 ∂xu|x=0+ =
√

D1

1
√

π
∂t

∫ t

0

1
√

t − ς
us(ς )dς . (56)

It is significant that for the normal diffusion formula (A21)

allows us to obtain the exact solution u(x, t ) as well:

u(x, t ) = exp
(

xD
1/2
t

)

us(t )

= ∂t

∫ t

0

erfc

(

x

2
√

t − ς

)

us(ς )dς . (57)

Hereafter we use known complementary error function de-

fined by

erfc(z) :=
2

√
π

∫ ∞

z

exp
(

−ξ 2
)

dξ . (58)

Thus, the FDM directly gives the well-known textbook result

for the desired flux on the boundary (56) and even for the field

u(x, t ) (57) in an elegant and simple way.

Particularly, using expressions (56) and (57) for the ab-

sorbing boundary condition us(t ) ≡ 1 and formula (A18), one

arrives at

−D1 ∂xu|x=0+ =
√

D1D
1/2
t 1 =

√

D1

πt
, (59)

u(x, t ) = exp
(

xD
1/2
t

)

1 = erfc

(

x

2
√

t

)

. (60)

B. Spherically symmetric normal diffusion-controlled reactions

Substituting expression (46) at α = 1 and (49) into Eq. (45)

by means of the auxiliary doundary flux (55) one can imme-

diately derive for the rate coefficient a compact formula

k(t ) = k1

(

1 + RD1
−1/2

D
1/2
t

)

us(t ) , (61)

where k1 := 4πRD1 is the steady-state Smoluchowsi rate con-

stant.

For the case of normal diffusion we can also find formula

(61) in another, more common way. With the aid of Eqs. (42)

and (60) we obtain a general representation for the concentra-

tion field:

ρ(r, t ) =
R

r
exp

[

(r − R)D
1/2
t

]

us(t ) . (62)

Using this representation one can find formula (61) for the rate

coefficient.

In particular, setting in Eqs. (61) and (62) us(t ) ≡ 1 we can

reproduce classical Smoluchowsi’s concentration field and

rate coefficient [31]:

ρ(r, t ) =
R

r
erfc

(

r − R

2
√

t

)

, (63)

k(t ) = k1

(

1 +
R

√
πD1t

)

. (64)

It should be stressed that, as we have mentioned above, the

FDM does not allow us to find concentration field in general
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case. However, often one is not interested in the concentra-

tion field, looking for the values connected with the relevant

boundary flux only, and the FDM works well leading directly

to the desired result. An additional point to emphasize is that

nowadays the general mathematical theory of the FDM is

not as advanced as for the normal diffusion [16]. Readers

are referred to Ref. [65], where corresponding theorems have

been proved.

VIII. SUBDIFFUSION-CONTROLLED REACTIONS

Let us now generalize the above formulas for the rate

coefficients (61) and (64) to the case of reactions occuring in

subdiffusive media when 0 < α < 1.

A. Auxiliary problem with the FDM

Clearly, the auxiliary subdiffusive Cauchy-Dirichlet prob-

lem to a spherically symmetric one (37), (41) with respect

to the auxiliary regular at infinity function u(x, t ) takes the

canonical form
(

∂t − DαD
1−α
t ∂2

x

)

u = 0 in R
2
+, (65)

u|t=0+ = 0 , u|x=0+ = us(t ) , u|x→+∞ → 0, (66)

jx(x, t ) = −DαD
1−α
t ∂xu . (67)

In view of the above our main task is to find the auxiliary flux

(67) at the boundary, i.e., jx(x, t )|x=0+.

According to the FDM using the commutation relation

(A15) at ν = 1/2 one can factorize the diffusion operator in

(65) in the following fashion:
(

∂t − DαD
1−α
t ∂2

x

)

=
(

D
1/2
t −

√

DαD
(1−α)/2
t ∂x

)

×
(

D
1/2
t +

√

DαD
(1−α)/2
t ∂x

)

(68)

in the sense of operator algebra [16].

It may be shown that to obey the regularity condition (27)

we should treat the equation with the right factor in (68).

Hence, equating this equation to zero, similar to Eq. (54) one

readily obtains

−
√

DαD
(1−α)/2
t ∂xu(x, t ) = D

1/2
t u(x, t ) . (69)

Multiplication of this equation by operator D
(α−1)/2
t from the

left yields

−
√

Dα∂xu(x, t ) = D
α/2
t u(x, t ) . (70)

Taking here the limit as x → 0+ we finally find

−
√

Dα ∂xu|x=0+ = D
α/2
t us(t ) . (71)

In the particular case of the absorbing boundary condition

expression (71) according to formula (A18) gives

−
√

Dα ∂xu|x=0+ = D
α/2
t 1 =

t−α/2

Ŵ(1 − α/2)
, (72)

where function Ŵ(1 − α/2) may be calculated with the help

of the integral

Ŵ

(

1 −
α

2

)

= 2

∫ +∞

0

ξ 1−α exp(−ξ 2)dξ .

Thus, the FDM algorithm again allows us to find immediately

the desired boundary gradient (71) [(72)] in the easiest way.

B. Wyss’s solution

It is common knowledge that 1D B′s subdiffusion towards

an absorbing boundary may be descibed exactly in terms of

Fox’s H function.

Applying operator Dα−1
t to Eq. (65) from the left by means

of the semigroup property (A11) we get FTDE in the form

used by Wyss [66]
(

D
α
t − Dα∂2

x

)

u = 0 . (73)

With the aid of Laplace’s transform method he obtained solu-

tion in the form corresponding to Cauchy-Dirichlet conditions

(66) under an absorbing boundary condition [66]

u(x, t ) = 1 − π−1/2

× H21
23

(

1

2
√

Dα

t−α/2x

∣

∣

∣

∣

(1, 1); (1, α/2)
(

1
2
, 1

2

)

,
(

1, 1
2

)

; (0, 1)

)

,

(74)

where Hmn
pq (ζ ) is the so-called Fox’s H function. An explicit

form of the Fox’s H function is not given here because of its

cumbersomeness (it can be found, e.g., in Refs. [1,43,67]).

By means of the exact solution (74) in a right neighborhood

of the point x = 0 Wyss also derived an asymptotic formula

[see Eq. (5.3) in Ref. [66]], which in our notation reads

u(x, t ) ∼ 1 −
xt−α/2

√
DαŴ(1 − α/2)

as x → 0 + . (75)

Wyss claimed that formula (75) describes the “long-time be-

havior” of the exact solution (74); however, one can see that

it leads to the same result as Babenko’s approach (72) for

the boundary gradient of the solution ∂xu|x=0+ in the whole

domain of this function R+.

C. Spherically symmetric subdiffusive rate

Combining formula (45) and relation (49) for the spheri-

cally symmetric subdiffusive rate coefficient we can readily

obtain a convenient representation

k(t ) = kR(t ) + kx(t ) . (76)

Hereinafter kR(t ) is the correction of the rate to curvature

effects, and kx(t ) is 1D auxiliary rate coefficient given by

kx(t ) = 4πR2 jx|x=0+ . (77)

In the case under study we evidently have

kR(t ) = 4πDαRD1−α
t us(t ) , (78)

kx(t ) = 4πR2
√

DαD
1−α/2
t us(t ) . (79)

For the absorbing boundary condition with the help of the

formula (A18) the above expressions lead to

kR(t ) = 4πDαR
t−1+α

Ŵ(α)
, (80)

kx(t ) = 4πR2
√

Dα

tα/2−1

Ŵ(α/2)
. (81)
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Clearly, formulas (78)–(81) work for the whole range of time

t ∈ R+ and the subdiffusion exponent 0 < α � 1.

IX. TIME-FRACTIONAL REACTION–TELEGRAPH

MODEL AT α = 1/2

Now consider the case of the spherically symmetric TFTE

at α = 1/2 (39) under initial and boundary conditions (41).

The corresponding reaction rate coefficient k(t ) is deter-

mined by formulas (45), (47), and (49). This shows that, to

calculate the rate coefficient, one should first find the bound-

ary gradient of the auxiliary solution u(x, t ), which may be

estimated by means of the FDM.

Thus, let us reduce the problem (39), (41), and (27) to the

auxiliary Cauchy-Dirichlet problem of canonical form
(

∂t + σ0D
1/2
t − D0∂

2
x

)

u = 0 in R
2
+, (82)

u|t=0+ = 0 , u|x=0+ = us(t ) , u|x→+∞ → 0, (83)

σ0Ct jx =
(

σ0 + D
1/2
t

)

jx = −D0D
1/2
t ∂xu, (84)

where for convenience sake we introduced the notation

σ−1
0 := √

τD and D0 := σ0D1/2. Recall that term σ0D
1/2
t u de-

scribes here the damping effects [52].

We have already noted in Sec. IV that, contrary to the

general Eq. (18), we deal with a parabolic time-fractional

diffusion equation and, therefore, do not need to specify an

initial condition for the time derivative of the solution [52].

Moreover, note in passing that the case at issue α = 1/2

is important from the theoretical viewpoint as well. In this

connection, e.g., Masoliver wrote the following: “When 0 <

α < 1/2 there is a transition from two different subdiffusive

regimes, while if 1/2 < α < 1 the transition is from superdif-

fusion to subdiffusion” [68].

A. General expression for the rate coefficient

It is important to keep in mind that there are exist two

modifications of the FDM depending on the way in which

the original diffusive operator can be factorized [15,16]. In

the first way factorization is performed directly by means of

infinite series with respect to the fractional derivatives (see

also Ref. [27]). The second modification of the method used

factorization with the aid of some auxiliary operators and in

this way needs formal calculations within the scope of the

operator algebra. For the canonical problem (82), (83) it is

convenient to use the second modification of the FDM.

Owing to commutation relation (A15) at ν = 1/2 one can

factorize the diffusion operator in Eq. (82) as follows [16]:

(

∂t + σ0D
1/2
t − D0∂

2
x

)

=
(

√

Dt + σ0D
1/2
t −

√
D0∂x

)

×
(

√

Dt + σ0D
1/2
t +

√
D0∂x

)

, (85)

where the operator root is defined by the relation (A19).

It is straightforward to show that to obey the regularity

condition in (83) we should seek a solution corresponding to

the equation formed by the right operator factor in Eq. (85),

(

√

Dt + σ0D
1/2
t +

√
D0∂x

)

u(x, t ) = 0 , (86)

which can be rewritten as

−
√

D0∂xu =
√

Dt + σ0D
1/2
t u . (87)

In its turn, similar to Eq. (47) we arrive at the formula

jx = −
1

σ0 + D
1/2
t

D
1/2
t D0∂xu , (88)

where the inverse relaxation operator is defined by the relation

(

1 + σ0D
1/2
t

) 1

1 + σ0D
1/2
t

= 1 . (89)

Combining Eqs. (87) and (88) we derive the general expres-

sion for the auxiliary boundary flux of B particles:

jx|x=0+ =
1

σ0 + D
1/2
t

D
1/2
t F0(t ) . (90)

Henceforth, for short we introduced an auxiliary “Fick-like”

boundary flux:

F0(t ) := −D0 ∂xu|x=0+

=
√

D0

√

Dt + σ0D
1/2
t us(t ) . (91)

Quite apparently, two extreme regimes of the problem (82),

(83) may be naturally distinguished [68]: (a) small times when

σ0

√
t ≪ 1 and (b) large times when σ0

√
t ≫ 1.

In its turn to obtain the corresponding auxiliary boundary

fluxes by means of formula (90) explicitly one should distin-

guish two steps of calculations. One has to find the appropriate

realization of the root operator
√
Dt + σ0D

1/2
t in Eq. (91) and

also appropriate realization of the inverse relaxation operator

C
−1
t in Eq. (48) (see Definition A.1). Below we shall find these

realizations of the root operator in Eq. (91) and the inverse

operator (48) for regimes (a) and (b) separately.

B. Expansion for small times

Here we shall obtain the auxiliary boundary flux of subdif-

fusive particles for short times: σ0

√
t ≪ 1 (or

√
t ≪ √

τD).

Step 1. First, find an appropriate realization of the root

operator in Eq. (91). Taking into account the operator identity

√

Dt + σ0D
1/2
t = D

1/2
t

√

1 + σ0D
−1/2
t

Eq. (91) may be recast as

F0(t ) =
√

D0D
1/2
t

√

1 + σ0D
−1/2
t us(t ) . (92)

We further can formally expand the operator root here in

powers of D
−1/2
t by means of the binomial operator series

(A20)

F0(t ) =
√

D0D
1/2
t

∞
∑

m=0

(

1/2

m

)

σ0
m
D

−m/2
t us(t )

=
√

D0

(

D
1/2
t +

1

2
σ0 −

1

8
σ0

2
D

−1/2
t

+
1

16
σ0

3
D

−1
t −

5

128
σ0

4
D

−3/2
t + · · ·

)

us(t ) . (93)
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Step 2. Now let us find a realization of the inverse relax-

ation operator to perform calculations at small times. One can

see that

1

σ0 + D
1/2
t

= D
−1/2
t

1

1 + σ0D
−1/2
t

. (94)

This representation allows us to utilizes here the series with

respect to powers of D
−1/2
t . Identity similar to (89) yields the

expansion

1

1 + σ0D
−1/2
t

= 1 − σ0D
−1/2
t + σ 2

0 D
−1
t

− σ 3
0 D

−3/2
t + σ 4

0 D
−2
t − · · · . (95)

At any finite t , using in Eq. (90), realization (94), and corre-

sponding expansion (95), we can express the desired auxiliary

boundary flux in the form

jx|x=0+ =
[

1 − σ0D
−1/2
t + σ 2

0 D
−1
t

− σ 3
0 D

−3/2
t + O

(

σ 4
0

)]

F0 as σ0 → 0. (96)

Substitution of the expansion (93) into Eq. (96) gives

jx|x=0+ =
√

D0

[

D
1/2
t − 1

2
σ0 + 3

8
σ 2

0 D
−1/2
t

− 5
16

σ 3
0 D

−1
t + O

(

σ 4
0

)]

us(t ) as σ0 → 0 , (97)

which in case of the absorbing condition acquires the form

jx|x=0+ =
√

D0√
πt

[

1 −
√

π

2
σ0

√
t +

3

4
σ 2

0 t

−
5
√

π

16
σ 3

0 t
√

t + O
(

σ 4
0

)

]

as σ0

√
t ≪ 1. (98)

C. Expansion for large times

It is worth noting that there is no standard procedure to

find the boundary flux for the general external canonical

Cauchy-Dirichlet problem (29), (30) [15,16]. Each specific

case requires careful mathematical consideration. Particularly

in the case at issue one should investigate a possibility to

perform expansion in positive orders of operator D
1/2
t . This

may be carried out by redefining the fractional derivatives ac-

cording to the extensions given in the Appendix (see Sec. A 4).

However, to keep the derivation from becoming too involved,

we will limit ourselves to determination of the leading term

of the rate coefficient asymptotic expansion as σ0

√
t → ∞.

It is significant that in a forthcoming paper by means of the

numerical calculations we will show that for the long time

values the FDM procedure leads to the expansion correct at

least to the order O(σ−4
0 ).

To calculate the auxiliary boundary flux of B particles for

large times σ0

√
t ≫ 1 (or

√
t ≫ √

τD) we have to use another

realization of the root and inverse relaxation operators.

Step 1. Let us transform the root operator in Eq. (91) in

another way, suitable for large times. With the help of the

operator identity

√

Dt + σ0D
1/2
t =

√
σ0D

1/4
t

√

1 + σ0
−1D

1/2
t (99)

we have

F0(t ) =
√

D0σ0D
1/4
t

√

1 + σ0
−1D

1/2
t us(t ) . (100)

This time, using the binomial series (A20), we can formally

expand the operator root (100) in powers of D
1/2
t :

F0(t ) =
√

D0σ0D
1/4
t

∞
∑

m=0

(

1/2

m

)

σ0
−m

D
m/2
t us(t ) . (101)

Hence, one can see that starting from the third term fractional

derivatives have the form Dν
t , where ν > 1. Leaving in this

expansion only terms with ν < 1 we arrive at

F0(t )

σ0

=
√

D1/2

(

D
1/4
t +

1

2σ0

D
3/4
t − · · ·

)

us(t ) . (102)

Step 2. Similarly to Eq. (95) for the inverse relaxation

operator one has an expansion useful at large times

C
−1
t =

1

1 + σ−1
0 D

1/2
t

= 1 −
1

σ0

D
1/2
t +

1

σ 2
0

Dt − · · · . (103)

Taking (102) and (103) into account, general formula (90) at

any finite t as σ0 → ∞ leads to the leading-term asymptotics

jx|x=0+ =
√

D1/2D
3/4
t us(t ) + O

(

σ−1
0

)

. (104)

For the absorbing boundary condition asymptotics (104) as

σ0 → ∞ is simplified to

jx|x=0+ =
√

D1/2

t−3/4

Ŵ(1/4)

[

1 + O
(

σ−1
0

)]

. (105)

The auxiliary boundary fluxes (97) for small times and (104)

for large times are also of independent interest since they

correspond to the 1D TFTE at α = 1/2 (23). Moreover, it is

clear that the leading terms in Eqs. (104) and (105) correspond

to the subdiffusion case at α = 1/2.

D. Spherically symmetric rate coefficient

In representation (76) for the spherically symmetric reac-

tion rate coefficient under consideration the correction to the

rate due to curvature effects reads

kR(t ) = 4πD1/2RC−1
t D

1/2
t us(t ) . (106)

It turns out that the FDM allows us to represent function kR(t )

explicitly in quadrature with the help of a general formula

(A22). So, according to formula (76) to calculate the desired

rate coefficient k(t ) it is sufficient to know the 1D auxiliary

rate coefficient kx(t ), or, in view of Eq.(77), auxiliary bound-

ary flux jx|x=0+ of subdiffusive particles.

Thus, formula (106) together with expansions of the 1D

auxiliary boundary fluxes for small times (97) and for large

times (104) completes the determination of the required

rate coefficient in the case of arbitrary boundary function

us(t ). To be specific, let us write here the 1D auxiliary rate

coefficient kx(t ) in the case of the absorbing boundary con-

dition. Clearly, for small (when
√

t/τD ≪ 1) and large times

(when
√

t/τD ≫ 1) formulas (98) and (105) can be recast,

044145-10



FRACTIONAL DIFFERENTIATION METHOD: SOME … PHYSICAL REVIEW E 110, 044145 (2024)

respectively,

kx(t ) = 4πR2

√

D1/2√
τD

1
√

πt

{

1 −
√

π

2

(

t

τD

)1/2

+
3

4

t

τD

−
5
√

π

16

(

t

τD

)3/2

+ O

[

(

t

τD

)2
]}

, (107)

kx(t ) = 4πR2
√

D1/2

t−3/4

Ŵ(1/4)

[

1 + O

(

√

τD

t

)]

. (108)

X. CONCLUDING REMARKS

The fractional differentiation method belongs to the class

of methods reducing partial (fractional) differential equa-

tions to some systems of (fractional) differential equations of

lower orders. This circumstance makes it possible to calculate

the desired reaction rate coefficient directly, without a pre-

liminary solution to the corresponding initial boundary value

diffusion problem.

We introduced the concept of the “canonical Cauchy-

Dirichlet problem” and formulated the fractional differenti-

ation method as the algorithm involving seven main steps.

To outline the fractional differentiation method technique

in detail several important examples were considered. We

applied this method to obtain trapping rate coefficients for

reactions due to normal diffusion and anomalous diffusion

including subdiffusion and also an important particular case

of the time-fractional telegraph diffusion. It is established that

the fractional differentiation method leads to the correct short-

time asymptotics for the boundary flux, whereas its expansion

at large times often should be treated as heuristic one.

With the help of the fractional differentiation method we

reproduced known results for normal and pure subdiffusive-

controlled reactions in rather simple and elegant manner.

Along with those corresponding results in case of reactions

which are described by the time-fractional telegraph diffusion

equation seem to be new.

Thus, we clearly showed that the fractional differentiation

method is quite promising in relation to numerous initial

boundary value problems involving kinetics of diffusion-

influenced reactions in condensed matter.
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APPENDIX: SOME MATHEMATICAL AIDS

To make this work maximally self-contained and facilitate

understanding of rigorous formulation and applications of the

fractional differentiation method, we present here the basic

notation, definitions, and some mathematical facts which are

used throughout the paper.

1. Basic mathematical definitions and notations

Recall common symbols: R denotes the reals, R+ the

strictly positive reals, and R
3 the 3D vector space associated

with 3D Euclidean space comprising points r := (x1, x2, x3)

with respect to an origin O. The subdiffusive medium is

naturally modeled by R
3. As is customary, let ∂
 denote

the boundary of a domain 
 ⊂ R
3 such that 
 = 
 ∪ ∂
,

where the bar symbol denotes the closure. If 
 ⊂ R
3 is a

bounded domain we denote its unbounded compliment as


− := R
3\
. For example, the ball domain of radius R

is 
 := {r ∈ R
3 : ‖r‖ < R} while 
− = {r ∈ R

3 : ‖r‖ > R},
where ‖ · ‖ stands for the common Euclidean norm. The

cylindrical evolution 4D domain Q ⊂ R
3+1 with the bottom

base 
 ⊂ R
3 at t = 0 is the set of points (r, t ) such that

Q := 
 × R+.

Thus, the exterior of the cylindrical domain Q is the

partially bounded domain Q− := R
3+1\Q. Clearly, if the

diffusion of B′s occurs in the configuration space 
− and

space-time domain Q− is often called the augmented config-

uration space. In particular for the set of points on a positive

spacial semiaxis (x, t ) ∈ Q− = R+ × R+ = R
2
+.

The 3D semispace we denote as R
3
+ := {r ∈ R

3 : x1 ∈
R+} ⊂ R

3, and in particular 1D space {x : x ∈ R+} is known

as the semi-infinite domain.

Let X and Y be some functional spaces. For a real-valued

function f ∈ X consider an operator A : f → Y .

Definition A.1. Any transformation of the operator A,

which allows us to carry out calculations of its action A f (t )

is termed a realization of the operator A on space X [16].

Clearly, the operator A realization is not unique (see

Sec. IX).

2. Definitions on fractional derivatives

It seems worthwhile to present briefly some important

mathematical definitions for the fractional calculus, which are

often used in diffusion theory [1,16,17].

First, recall the following definition.

Definition A.2. A real-valued function f : R+ → R is

said to be absolutely locally integrable on R+ if, for every

point t0 ∈ R+, there is an interval (a, b) ⊂ R+ such that t0 ∈
(a, b) and the following integral exists:

∫ b

a

| f (t )|dt < +∞ .

We designate the class of these functions as L1
loc(R+).

Example A.1. Commonly used in applications is function

f (t ) ≡ 1 ∈ L1
loc(R+) but it is not integrable on R+.

Throughout this paper we shall consider real-valued func-

tions f ∈ L1
loc(R+).

Definition A.3. The left-sided Riemann-Liouville frac-

tional derivative operator of ν-th order with respect to the

variable t ∈ R+ is defined by the convolution

D
ν
t f (t ) :=

1

Ŵ(1 − ν)
∂t

∫ t

0

(t − ς )−ν f (ς )dς , (A1)

where ν < 1.

Strictly speaking, clarification “at the zero base point”

should be added to this definition [17]. Hereafter we use

the short-hand notation Dν
t instead of common notation 0D

ν
t

and Ŵ(y) denotes the Euler gamma function. Besides, for the

notation unification, symbols ∂t and Dt = D1
t are alternatively

used. In the ensuing, for brevity’s sake, we shall call operator

Dν
t just a fractional derivative.
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Remember, fractional derivatives are defined in an ambigu-

ous way [17]. In particular integration Eq. (A1) by parts leads

to the so-called regularized fractional derivative

C
D

ν
t f (t ) = D

ν
t f (t ) −

t−ν

Ŵ(1 − ν)
f (0+) , (A2)

which is called the left-sided Caputo fractional derivative of

order ν and given explicitly as [17]

C
D

ν
t f (t ) :=

1

Ŵ(−ν)

∫ t

0

(t − ς )−ν∂ς f (ς )dς . (A3)

We emphasize that often the fractional Cattaneo equation (16)

is involved with the Caputo derivatives, and, broadly speak-

ing, these fractional derivatives are used extensively in

research, particularly to study subdiffusion [51].

The above Eq. (A2) implies that both fractional derivatives

Dν
t and CDν

t coincide for functions f : R+ → R with a nul-

lvalue from the right at the zero. This is a reason why we

shall treat these functions only [for another reason see also

the discussion on formula (A13)]. It may be shown that for

both fractional derivatives (A1) and (A3) the correspondence

principle holds true [16]:

lim
ν→1−

D
ν
t f (t ) = lim

ν→1−
C
D

ν
t f (t ) = ∂t f (t ) .

For orders −ν ∈ R− integration in Eq. (A2) by parts once

again, and with the aid of the known relation Ŵ(1 − ν) =
−νŴ(−ν), yields another very compact and useful expression

[16].

Definition A.4. When ν ∈ R+ the left-sided Riemann-

Liouville fractional integral operator is

D
−ν
t f (t ) :=

1

Ŵ(ν)

∫ t

0

(t − ς )ν−1 f (ς )dς . (A4)

Plainly the left-sided Riemann-Liouville fractional derivative

(A1) is the left inverse to the fractional integral (A4) with

the same order, i.e., for all ν ∈ R− and t ∈ R+ the following

relation holds:

D
−ν
t D

ν
t f (t ) = f (t ) . (A5)

The fractional integral (A4) leads to the expression for

the classical integral operator, i.e., when order ν = −n and

Ŵ(n) = (n − 1)!:

D
−n
t f (t ) =

1

(n − 1)!

∫ t

0

(t − ς )n−1 f (ς )dς, n ∈ N .

(A6)

Note that in applications for an important specific case of

ν = 1/2 the designations D
1/2
t and

√
Dt are alternatively used.

Frequently the FDM implementations deal with operators

Dν
t , when ν > 1. For simple cases one can easily reduce them

to the lower order operators, e.g., D1+α
t = DtD

α
t when 0 <

α < 1 (see the discussion in Sec. IX).

Recall the following.

Definition A.5. If for a given equation an unknown func-

tion is contained under the operation of the fractional order

derivatives it is called a differential equation of fractional

order.

3. Some properties of fractional derivatives

Let us dwell on some noteworthy properties of the frac-

tional derivatives which are used in the paper.

Given Definition A.3 preserves the well-known properties

of the ordinary derivative of integer order. For complemen-

tation sake let us define the identity operator I := D0
t (zero

rule); i.e., we mean [17]

D
0
t f (t ) = I f (t ) = f (t ), (A7)

∂n
t f (t ) ≡ D

n
t f (t ) if n ∈ N . (A8)

Throughout the text, we use the simplified notation I = 1, if

this does not cause confusion. Clearly Dν
t is a linear operator;

i.e., for any functions f (t ) and g(t ) from L1
loc(R+) and all real

constants a and b we can write

D
ν
t {a f (t ) + bg(t )} = aDν

t { f (t )} + bDν
t {g(t )} . (A9)

To avoid discussion of rather subtle mathematical questions

we consider functions with a null value from the right at the

zero, i.e., we assume that the following limit holds true:

lim
t→0+

f (t ) = 0 . (A10)

Then Definition A.3 implies the basic semigroup property of

the fractional derivative operator Dν
t :

D
ν
t D

μ
t f (t ) = D

ν+μ
t f (t ), ν + μ � 1, (A11)

which in turn leads to the operator commutative property:

D
ν
t D

μ
t = D

μ
t D

ν
t . (A12)

Property (A11) may be readily proved for ν + μ < 1, and

in the case when ν + μ = 1 its proof is more difficult and

requires a separate consideration (see, e.g., Ref. [16]). Note

that condition (A10) is important for the FDM. Indeed, in

a general case D
−1/2
t Dt �= DtD

−1/2
t since, for an arbitrary

smooth function f (t ), one can show that

D
−1/2
t Dt f (t ) = DtD

−1/2
t f (t ) − f (0+)(πt )−1/2 . (A13)

Similarly the law of exponents for integration holds:

D
−ν
t D

−μ
t = D

−ν−μ
t

and Eq. (A5) in the operator form reads

D
−ν
t D

ν
t = 1 . (A14)

Moreover, for all smooth functions on R
2
+ the following com-

mutation relation holds true:

D
ν
t ∂x = ∂xD

ν
t , ν < 1 . (A15)
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Consider also some useful formulas for fractional derivatives.

The known classical Leibniz rule can be extended to fractional

derivatives. For any two smooth functions f (t ) and g(t ) the

fractional derivative operator of their product is given by the

general Leibniz rule [15,54]:

D
ν
t { f (t )g(t )} =

∞
∑

n=0

(

ν

n

)

D
n
t f (t )Dν−n

t g(t ) . (A16)

Here the generalized binomial function defined for all ν ∈ R

and given by formulas

(

ν

0

)

:= 1 ,

(

ν

n

)

:=
1

n!
ν(ν − 1) · · · (ν − n + 1) , n ∈ N . (A17)

The action of operators Dν
t on the power functions tμ, playing

an important role for many applications, is [16,21]

D
ν
t tμ =

Ŵ(μ + 1)

Ŵ(μ + 1 − ν)
tμ−ν, μ > −1 , ν < 1 . (A18)

Note in passing that property (A18) resembles those for the

classical differential operator, i.e., when ν ∈ N.

For any b ∈ R the operator root
√
Dt + b is defined as

[15,17]

√

Dt + b
√

Dt + b = Dt + b . (A19)

Moreover, the following formal binomial series expansion of

the operator root is frequently used in applications [15]:

√

1 + bBt =
∞

∑

m=0

(

1/2

m

)

bm
B

m
t , (A20)

where Bt is a time-dependent operator.

For all points (x, t ) ∈ R+ × R+ we can define the exponent

operator as follows [16]:

exp
[

xD
1/2
t

]

f (t ) := ∂t

∫ t

0

erfc

(

x

2
√

t − ς

)

f (ς )dς. (A21)

In the table of fractional derivatives of Ref. [16] one can find

a useful formula

1

a + D
1/2
t

g(t ) =
∫ t

0

g(ς )
√

π (t − ς )
dς − a

∫ t

0

× exp[a2(t − ς )]erfc(a
√

t − ς )g(ς )dς ,

(A22)

where a is a nonnegative real parameter.

Finally note that Ref. [16] contains rather comprehensive

tables of fractional derivatives and operators action on appro-

priate functions.

4. An extension of the fractional derivatives

Strictly speaking the semigroup property (A11) does not

work at ν + μ > 1. In order to avoid this difficulty the defini-

tion of the fractional derivative (A1) may be extended to the

following [16]:

−∞D
γ
t f (t ) :=

1

Ŵ(1 − γ )
∂t

∫ t

−∞
(t − ς )−γ f (ς )dς (A23)

when γ < 1 and

−∞D
γ
t f (t ) :=

1

Ŵ(2 − γ )
∂2

t

∫ t

−∞
(t − ς )1−γ f (ς )dς (A24)

if 1 � γ < 2. In Eqs. (A23) and (A24) for arguments of the

fractional derivatives −∞D
γ
t one should use real-valued causal

functions of time f (t ) = g(t )1+(t ) such that limt→0− | f (t )| <

+∞ and g ∈ L1
loc(R+). Here we defined the unit step function

1+ : R\{0} → R as a piecewise function, which values are

1+(t ) = 1 if t ∈ R+ and zero otherwise.

Example A.2. Consider the semigroup property for the

case ν = 1 and μ = 1/2 when t > 0:

DtD
1/2
t 1 = Dt (πt )−1/2 = −

1

2
√

π
t−3/2 �= D

1/2
t Dt 1 = 0 .

On the other hand one can see that in this case

Dt −∞D
1/2
t 1 = −

1

2
√

π
t−3/2 =−∞ D

1/2
t Dt 1

= −∞D
1/2
t δ(t ) =

1
√

π
∂t

∫ t

−∞

δ(ς )
√

t − ς
dς

as it should be.

[1] R. Metzler and J. Klafter, The random walk’s guide to anoma-

lous diffusion: A fractional dynamics approach, Phys. Rep. 339,

1 (2000).

[2] A. I. Shushin, Anomalous features of the kinetics of

subdiffusion-assisted bimolecular reactions, J. Chem. Phys.

122, 154504 (2005).

[3] I. M. Sokolov, M. G. W. Schmidt, and F. Sagués, Reaction-

subdiffusion equations, Phys. Rev. E 73, 031102 (2006).

[4] B. I. Henry, T. A. M. Langlands, and S. L. Wearne, Anoma-

lous diffusion with linear reaction dynamics: From continuous

time random walks to fractional reaction-diffusion equations,

Phys. Rev. E 74, 031116 (2006).

[5] A. Yadav, S. Fedotov, V. Méndez, and W. Horsthemke, Prop-

agating fronts in reaction–transport systems with memory,

Phys. Lett. A 371, 374 (2007).

[6] D. Campos, S. Fedotov, and V. Méndez, Anomalous reaction-

transport processes: The dynamics beyond the law of mass

action, Phys. Rev. E 77, 061130 (2008).

[7] D. Froemberg, H. Schmidt-Martens, I. M. Sokolov, and F.

Sagues, Front propagation in A + B → 2A reaction under sub-

diffusion, Phys. Rev. E 78, 011128 (2008).

[8] S. Fedotov, Non-Markovian random walks and nonlinear re-

actions: Subdiffusion and propagating fronts, Phys. Rev. E 81,

011117 (2010).

044145-13

https://doi.org/10.1016/S0370-1573(00)00070-3
https://doi.org/10.1063/1.1883164
https://doi.org/10.1103/PhysRevE.73.031102
https://doi.org/10.1103/PhysRevE.74.031116
https://doi.org/10.1016/j.physleta.2007.06.044
https://doi.org/10.1103/PhysRevE.77.061130
https://doi.org/10.1103/PhysRevE.78.011128
https://doi.org/10.1103/PhysRevE.81.011117


SERGEY D. TRAYTAK PHYSICAL REVIEW E 110, 044145 (2024)

[9] E. Abad, S. B. Yuste, and K. Lindenberg, Reaction-subdiffusion

and reaction-superdiffusion equations for evanescent particles

performing continuous-time random walks, Phys. Rev. E 81,

031115 (2010).

[10] S. B. Yuste, E. Abad, and K. Lindenberg, Reaction-subdiffusion

model of morphogen gradient formation, Phys. Rev. E 82,

061123 (2010).

[11] C. N. Angstmann, I. C. Donnelly, and B. I. Henry, Contin-

uous time random walks with reactions forcing and trapping,

Math. Model. Nat. Phenom. 8, 17 (2013).

[12] A. A. Nepomnyashchy, Mathematical modelling of

subdiffusion-reaction systems, Math. Model. Nat. Phenom. 11,

26 (2016).

[13] C. N. Angstmann, I. C. Donnelly, B. I. Henry, B. A. Jacobs,

T. A. M. Langlands, and J. A. Nichols, From stochastic

processes to numerical methods: A new scheme for solving

reaction subdiffusion fractional partial differential equations,

J. Comput. Phys. 307, 508 (2016).

[14] Y. I. Babenko, Heat transfer in an unevenly cooled rod, J. Eng.

Phys. 26, 362 (1974).

[15] Y. I. Babenko, Heat and Mass Transfer: Calculating of Heat and

Diffusion Fluxes (Khimia, Leningrad, 1986) (in Russian).

[16] Y. I. Babenko, Fractional Differentiation Method in Applied

Problems of Heat and Mass Transfer (NPO “Professional”, St.

Peterburg, 2009) (in Russian).

[17] I. Podlubny, Fractional Differential Equations: An Introduction

to Fractional Derivatives, Fractional Differential Equations,

to Methods of Their Solution and Some of Their Applications

(Academic Press, San Diego, 1999).

[18] R. Courant and D. Hilbert, Methods of Mathematical Physics

(John Wiley and Sons, New York, 1962), Vol. II.

[19] K. B. Oldham, A new approach to the solution of electro-

chemical problems involving diffusion, Anal. Chem. 41, 1904

(1969).

[20] K. B. Oldham and J. Spanier, A general solution of the diffusion

equation for semiinfinite geometries, J. Math. Anal. Appl. 39,

655 (1972).

[21] K. B. Oldham and J. Spanier, The Fractional Calculus: Theory

and Applications of Differentiation and Integration to Arbitrary

Order (Dover, New York, 2006).

[22] C. Li and K. Clarkson, Babenko’s approach to Abel’s integral

equations, Mathematics 6, 32 (2018).

[23] C. Li and K. Clarkson, On the uniqueness of the bounded

solution for the fractional nonlinear partial integro-differential

equation with approximations, Mathematics 11, 2752 (2023).

[24] C. Li and J. Beaudin, Nonlinear integro-differential equations,

Fractal Fract. 5, 82 (2021).

[25] S. D. Traytak, The capture of fine dispersed particles by thermo-

dynamically unstable droplets, Ph.D. thesis, Moscow Aviation

University, Moscow, 1985 (in Russian).

[26] S. D. Traytak, Nonsteady capture of aerosol particles by ther-

modynamically nonequilibrium drops, High Temp. 28, 587

(1990).

[27] S. D. Traytak, On the solution of the Debye-Smoluchowski

equation with a Coulomb potential. I The case of a random

initial distribution and a perfectly absorbing sink, Chem. Phys.

140, 281 (1990).

[28] S. D. Traytak, The use of fractional-order derivatives for deter-

mination of the time-dependent rate constant, Chem. Phys. Lett.

173, 63 (1990).

[29] S. D. Traytak and T. V. Traytak, Method of fractional derivatives

in time-dependent diffusion, Diffus. Fundam. 6, 1 (2007).

[30] S. D. Traytak, Method of fractional derivatives in the theory

of diffusion-controlled reactions for determination of the time-

dependent rate constant, in Proceedings of the 6th International

Conference on The Modeling of Nonlinear Processes and Sys-

tems, edited by L. A. Uvarova (Janus-K, Moscow, 2023),

pp. 69–73.

[31] S. A. Rice, Diffusion-Limited Reactions (Elsevier, Amsterdam,

1985).

[32] S. B. Yuste and K. Lindenberg, Trapping reactions with subdif-

fusive traps and particles characterized by different anomalous

diffusion exponents, Phys. Rev. E 72, 061103 (2005).

[33] S. B. Yuste, K. Lindenberg, and J. J. Ruiz-Lorenzo

Subdiffusion-limited reactions, in Anomalous Transport: Foun-

dations and Applications, edited by R. Klages, G. Radons, and

I. M. Sokolov (Wiley-VCH, Weinheim, 2007), pp. 367–395.

[34] R. Metzler, A. Rajyaguru, and B. Berkowitz, Modelling anoma-

lous diffusion in semi-infinite disordered systems and porous

media, New J. Phys. 24, 123004 (2022).

[35] S. D. Traytak, Accurate analytical calculation of the rate coef-

ficient for the diffusion-controlled reactions due to hyperbolic

diffusion, J. Chem. Phys. 158, 044104 (2023).

[36] R. Gorenflo and F. Mainardi, in Anomalous Transport: Foun-

dations and Applications, edited by R. Klages, G. Radons, and

I. M. Sokolov (Wiley-VCH, Weinheim, 2007),

pp. 93–127.

[37] G. M. Webb, G. P. Zank, E. K. Kaghashvili, and J. A. Le

Roux, Compound and perpendicular diffusion of cosmic rays

and random walk of the field lines. I. Parallel particle transport

models, Astrophys. J. 651, 211 (2006).

[38] R. Metzler and J.-H. Jeon, Anomalous diffusion and fractional

transport equations, in Fractional Dynamics: Recent Advances,

edited by R. Metzler, S. C. Lim, and J. Klafter (World Scientific,

Singapore, 2012), pp. 3–32.

[39] A. Compte and R. Metzler, The generalized Cattaneo equation

for the description of anomalous transport processes, J. Phys.

A: Math. Gen. 30, 7277 (1997).

[40] J. Sung, E. Barkai, R. J. Silbey, and S. Lee, Fractional dynamics

approach to diffusion-assisted reactions in disordered media,

J. Chem. Phys. 116, 2338 (2002).

[41] K. Seki, M. Wojcik, and M. Tachiya, Fractional reaction-

diffusion equation, J. Chem. Phys. 119, 2165 (2003).

[42] S. B. Yuste, E. Abad, and K. Lindenberg, Reactions in

subdiffusive media and associated fractional equations, in Frac-

tional Dynamics: Recent Advances, edited by R. Metzler, S.

C. Lim, and J. Klafter (World Scientific, Singapore, 2012),

pp. 77–106.

[43] L. R. Evangelista and E. K. Lenzi, Fractional Diffusion Equa-

tions and Anomalous Diffusion (Cambridge University Press,

Cambridge, 2018).

[44] E. Barkai and R. J. Silbey, Fractional Kramers equation, J. Phys.

Chem. B 104, 3866 (2000).

[45] K. Gorska, A. Horzela, E. K. Lenzi, G. Pagnini, and T. Sandev,

Generalized Cattaneo (telegrapher’s) equations in modeling

anomalous diffusion phenomena, Phys. Rev. E 102, 022128

(2020).

[46] J. Masoliver and K. Lindenberg, Two-dimensional telegraphic

processes and their fractional generalizations, Phys. Rev. E 101,

012137 (2020).

044145-14

https://doi.org/10.1103/PhysRevE.81.031115
https://doi.org/10.1103/PhysRevE.82.061123
https://doi.org/10.1051/mmnp/20138202
https://doi.org/10.1051/mmnp/201611102
https://doi.org/10.1016/j.jcp.2015.11.053
https://doi.org/10.1007/BF00827706
https://doi.org/10.1021/ac60282a016
https://doi.org/10.1016/0022-247X(72)90189-8
https://doi.org/10.3390/math6030032
https://doi.org/10.3390/math11122752
https://doi.org/10.3390/fractalfract5030082
https://link.springer.com/journal/10740
https://doi.org/10.1016/0301-0104(90)87009-Z
https://doi.org/10.1016/0009-2614(90)85303-T
https://diffusion.journals.qucosa.de/diffusion/article/view/96
https://doi.org/10.1103/PhysRevE.72.061103
https://doi.org/10.1088/1367-2630/aca70c
https://doi.org/10.1063/5.0134727
https://doi.org/10.1086/507415
https://doi.org/10.1088/0305-4470/30/21/006
https://doi.org/10.1063/1.1448294
https://doi.org/10.1063/1.1587126
https://doi.org/10.1021/jp993491m
https://doi.org/10.1103/PhysRevE.102.022128
https://doi.org/10.1103/PhysRevE.101.012137


FRACTIONAL DIFFERENTIATION METHOD: SOME … PHYSICAL REVIEW E 110, 044145 (2024)

[47] J. Masoliver, Telegraphic transport processes and their frac-

tional generalization: A review and some extensions, Entropy

23, 364 (2021).

[48] S. Lee and S. D. Traytak, Inertial dynamic effects on diffusion-

influenced reactions: Approach based on the diffusive Cattaneo

system, J. Chem. Phys. 158, 204111 (2023).

[49] S. Lee, S. D. Traytak, and K. Seki, Persistent effects of iner-

tia on diffusion-influenced reactions: Theoretical methods and

applications, J. Chem. Phys. 159, 144105 (2023).

[50] G. E. Paredes, Fractional-Order Models for Nuclear Reactor

Analysis (Woodhead Publishing, Cambridge, 2020).

[51] T. Kosztołowicz, Cattaneo-type subdiffusion-reaction equation,

Phys. Rev. E 90, 042151 (2014).

[52] E. Orsingher and L. Beghin, Time-fractional telegraph

equations and telegraph processes with Brownian time,

Probab. Theory Relat. Fields 128, 141 (2004).

[53] F. Huang, Analytical solution for the time-fractional telegraph

equation, J. Appl. Math. 2009, 890158 (2009).

[54] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory

and Applications of Fractional Differential Equations (Elsevier,

North-Holland, 2006).

[55] L. Liu, L. Zheng, F. Liuc, and X. Zhang, Anomalous convection

diffusion and wave coupling transport of cells on comb frame

with fractional Cattaneo–Christov flux, Commun. Nonlinear

Sci. Numer. Simulat. 38, 45 (2016).

[56] A. M. Berezhkovskii, L. Dagdug, and S. M. Bezrukov, From

normal to anomalous diffusion in comb-like structures in three

dimensions, J. Chem. Phys. 141, 054907 (2014).

[57] R. T. Sibatov and E. V. Morozova, Multiple trapping on a

comb structure as a model of electron transport in disordered

nanostructured semiconductors, J. Exp. Theor. Phys. 120, 860

(2015).

[58] A. Iomin, Subdiffusion on a fractal comb, Phys. Rev. E 83,

052106 (2011).

[59] V. E. Arkhincheev, The capture of particles on absorbing

traps in the medium with anomalous diffusion: The effec-

tive fractional order diffusion equation and the slow temporal

asymptotic of survival probability, Physica A 550, 124487

(2020).

[60] J. Kemppainen, Existence and uniqueness of the solution for a

time-fractional diffusion equation with Robin boundary condi-

tion, Abstr. Appl. Anal. 2011, 321903 (2011).

[61] A. N. Tikhonov and A. A. Samarskii, Equations of Mathemati-

cal Physics (Pergamon Press, Oxford, 1963).

[62] F. Mainardi, The fundamental solutions for the fractional

diffusion-wave equation, Appl. Math. Lett. 9, 23 (1996).

[63] S. B. Yuste and K. Lindenberg, Subdiffusive target problem:

Survival probability, Phys. Rev. E 76, 051114 (2007).

[64] E. Abad, S. B. Yuste, and K. Lindenberg, Elucidating the role

of subdiffusion and evanescence in the target problem: Some

recent results, Math. Model. Nat. Phenom. 8, 100 (2013).

[65] A. M. Nakhushev, Fractional Calculus and Its Application

(Fizmatlit, Moscow, 2003) (in Russian).

[66] W. Wyss, The fractional diffusion equation, J. Math. Phys. 27,

2782 (1986).

[67] A. M. Mathai, R. K. Saxena, and H. J. Haubold, The H-

Function: Theory and Applications (Springer, New York,

2010).

[68] J. Masoliver, Fractional telegrapher’s equation from fractional

persistent random walks, Phys. Rev. E 93, 052107 (2016).

044145-15

https://doi.org/10.3390/e23030364
https://doi.org/10.1063/5.0147260
https://doi.org/10.1063/5.0167010
https://doi.org/10.1103/PhysRevE.90.042151
https://doi.org/10.1007/s00440-003-0309-8
https://doi.org/10.1155/2009/890158
https://doi.org/10.1016/j.cnsns.2016.02.009
https://doi.org/10.1063/1.4891566
https://doi.org/10.1134/S106377611504024X
https://doi.org/10.1103/PhysRevE.83.052106
https://doi.org/10.1016/j.physa.2020.124487
https://doi.org/10.1155/2011/321903
https://doi.org/10.1016/0893-9659(96)00089-4
https://doi.org/10.1103/PhysRevE.76.051114
https://doi.org/10.1051/mmnp/20138207
https://doi.org/10.1063/1.527251
https://doi.org/10.1103/PhysRevE.93.052107

